1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
|
user-level: 0.945
permissions: 0.935
peripherals: 0.918
debug: 0.912
register: 0.909
semantic: 0.906
ppc: 0.904
vnc: 0.904
TCG: 0.901
KVM: 0.897
socket: 0.886
PID: 0.884
mistranslation: 0.882
architecture: 0.879
hypervisor: 0.875
VMM: 0.862
graphic: 0.860
kernel: 0.857
device: 0.857
boot: 0.856
assembly: 0.853
performance: 0.848
arm: 0.843
risc-v: 0.837
network: 0.818
x86: 0.807
files: 0.790
virtual: 0.784
i386: 0.732
ppc: softfloat float implementation issues
Per bug #1841491, Richard Henderson (rth) said:
> The float test failure is part of a larger problem for target/powerpc in which all float
> routines are implemented incorrectly. They are all implemented as double operations with
> rounding to float as a second step. Which not only produces incorrect exceptions, as in
> this case, but incorrect > numerical results from the double rounding.
>
> This should probably be split to a separate bug...
-- ppc64le native:
$ gcc -c -O2 ffma.c
$ gcc -O2 test-ffma.c ffma.o -lm -o test-ffma
$ ./test-ffma $(./test-ffma)
ffma(0x1p-149, 0x1p-149, 0x1p-149)
0x0
0xa000000
FE_INEXACT FE_UNDERFLOW
0x1p-149
-- qemu-system-ppc64:
$ ./test-ffma $(./test-ffma)
ffma(0x1p-149, 0x1p-149, 0x1p-149)
0x0
0x2000000
FE_INEXACT
0x1p-149
I'm confused by this testcase as it's not a fused multiply-add but as you say two combined operations.
It should be a fused multiply add; you may need to use -ffast-math or
something to get the compiler to generate the proper instruction.
However, one can see from target/ppc/translate/fp-impl.inc.c:
/* fmadd - fmadds */
GEN_FLOAT_ACB(madd, 0x1D, 1, PPC_FLOAT);
through to _GEN_FLOAT_ACB:
gen_helper_f##op(t3, cpu_env, t0, t1, t2); \
if (isfloat) { \
gen_helper_frsp(t3, cpu_env, t3); \
} \
That right there is a double-precision fma followed by a round
to single precision. This pattern is replicated for all single
precision operations, and is of course wrong.
I believe that correct results may be obtained by having
single-precision helpers that first convert the double-precision
input into a single-precision input using helper_tosingle(),
perform the required operation, then convert the result back to
double-precision using helper_todouble().
The manual says:
# For single-precision arithmetic instructions, all input values
# must be representable in single format; if they are not, the
# result placed into the target FPR, and the setting of
# status bits in the FPSCR and in the Condition Register
# (if Rc=1), are undefined.
The tosingle/todouble conversions are exact and bit-preserving.
They are used by load-single and store-single that convert a
single-precision in-memory value to the double-precision register
value. Therefore the input given to float32_add using this
conversion would be exactly the same as if we had given the
value unmollested from a memory input.
I don't know what real ppc hw does -- whether it takes all of
the double-precision input bits and rounds to 23-bits, like the
old 80387 hardware does, or truncates the input as I propose.
But for architectural results we don't have to care, because
of the UNDEFINED escape clause.
Testing on current master shows the behavior is correct. I guess rth's patch fixed this case.
It looks like the test case isn't properly exercising the code that is likely to be wrong. It sounds like we need a proper comprehensive testcase for fused operations (along the line of the ARM fcvt test case). This can probably be a multiarch testcase which we can build for all the various targets.
This is a generic floating point multiply and accumulate test for
single precision floating point values. I've split of the common float
functions into a helper library so additional tests can use the same
common code.
Signed-off-by: Alex Bennée <email address hidden>
---
tests/tcg/multiarch/Makefile.target | 7 +-
tests/tcg/multiarch/float_helpers.c | 208 ++++++++++++++++++++++++++++
tests/tcg/multiarch/float_helpers.h | 26 ++++
tests/tcg/multiarch/float_madds.c | 78 +++++++++++
4 files changed, 318 insertions(+), 1 deletion(-)
create mode 100644 tests/tcg/multiarch/float_helpers.c
create mode 100644 tests/tcg/multiarch/float_helpers.h
create mode 100644 tests/tcg/multiarch/float_madds.c
diff --git a/tests/tcg/multiarch/Makefile.target b/tests/tcg/multiarch/Makefile.target
index 657a04f802d..0446b75c456 100644
--- a/tests/tcg/multiarch/Makefile.target
+++ b/tests/tcg/multiarch/Makefile.target
@@ -10,12 +10,17 @@ MULTIARCH_SRC=$(SRC_PATH)/tests/tcg/multiarch
# Set search path for all sources
VPATH += $(MULTIARCH_SRC)
MULTIARCH_SRCS =$(notdir $(wildcard $(MULTIARCH_SRC)/*.c))
-MULTIARCH_TESTS =$(MULTIARCH_SRCS:.c=)
+MULTIARCH_TESTS =$(filter-out float_helpers, $(MULTIARCH_SRCS:.c=))
#
# The following are any additional rules needed to build things
#
+
+float_madds: LDFLAGS+=-lm
+float_madds: float_madds.c float_helpers.c
+ $(CC) $(CFLAGS) $(EXTRA_CFLAGS) -O2 $< $(MULTIARCH_SRC)/float_helpers.c -o $@ $(LDFLAGS)
+
testthread: LDFLAGS+=-lpthread
# We define the runner for test-mmap after the individual
diff --git a/tests/tcg/multiarch/float_helpers.c b/tests/tcg/multiarch/float_helpers.c
new file mode 100644
index 00000000000..481d8d33317
--- /dev/null
+++ b/tests/tcg/multiarch/float_helpers.c
@@ -0,0 +1,208 @@
+/*
+ * Common Float Helpers
+ *
+ * This contains a series of useful utility routines and a set of
+ * floating point constants useful for exercising the edge cases in
+ * floating point tests.
+ *
+ * Copyright (c) 2019 Linaro
+ *
+ * SPDX-License-Identifier: GPL-3.0-or-later
+ */
+
+/* we want additional float type definitions */
+#define __STDC_WANT_IEC_60559_BFP_EXT__
+#define __STDC_WANT_IEC_60559_TYPES_EXT__
+
+#define _GNU_SOURCE
+#include <stdio.h>
+#include <inttypes.h>
+#include <math.h>
+#include <float.h>
+#include <fenv.h>
+
+#include "float_helpers.h"
+
+#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
+
+/*
+ * Half Precision Numbers
+ *
+ * Not yet well standardised so we return a plain uint16_t for now.
+ */
+
+/* no handy defines for these numbers */
+static uint16_t f16_numbers[] = {
+ 0xffff, /* -NaN / AHP -Max */
+ 0xfcff, /* -NaN / AHP */
+ 0xfc01, /* -NaN / AHP */
+ 0xfc00, /* -Inf */
+ 0xfbff, /* -Max */
+ 0xc000, /* -2 */
+ 0xbc00, /* -1 */
+ 0x8001, /* -MIN subnormal */
+ 0x8000, /* -0 */
+ 0x0000, /* +0 */
+ 0x0001, /* MIN subnormal */
+ 0x3c00, /* 1 */
+ 0x7bff, /* Max */
+ 0x7c00, /* Inf */
+ 0x7c01, /* NaN / AHP */
+ 0x7cff, /* NaN / AHP */
+ 0x7fff, /* NaN / AHP +Max*/
+};
+
+const int num_f16 = ARRAY_SIZE(f16_numbers);
+
+uint16_t get_f16(int i) {
+ return f16_numbers[i % num_f16];
+}
+
+/* only display as hex */
+char *fmt_16(uint16_t num) {
+ char *fmt;
+ asprintf(&fmt, "f16 %#04x", num);
+ return fmt;
+}
+
+/*
+ * Single Precision Numbers
+ */
+
+#ifndef SNANF
+/* Signaling NaN macros, if supported. */
+# if __GNUC_PREREQ(3, 3)
+# define SNANF (__builtin_nansf (""))
+# define SNAN (__builtin_nans (""))
+# define SNANL (__builtin_nansl (""))
+# endif
+#endif
+
+static float f32_numbers[] = {
+ -SNANF,
+ -NAN,
+ -INFINITY,
+ -FLT_MAX,
+ -1.111E+31,
+ -1.111E+30,
+ -1.08700982e-12,
+ -1.78051176e-20,
+ -FLT_MIN,
+ 0.0,
+ FLT_MIN,
+ 2.98023224e-08,
+ 5.96046E-8, /* min positive FP16 subnormal */
+ 6.09756E-5, /* max subnormal FP16 */
+ 6.10352E-5, /* min positive normal FP16 */
+ 1.0,
+ 1.0009765625, /* smallest float after 1.0 FP16 */
+ 2.0,
+ M_E, M_PI,
+ 65503.0,
+ 65504.0, /* max FP16 */
+ 65505.0,
+ 131007.0,
+ 131008.0, /* max AFP */
+ 131009.0,
+ 1.111E+30,
+ FLT_MAX,
+ INFINITY,
+ NAN,
+ SNANF
+};
+
+const int num_f32 = ARRAY_SIZE(f32_numbers);
+
+float get_f32(int i) {
+ return f32_numbers[i % num_f32];
+}
+
+char *fmt_f32(float num) {
+ uint32_t single_as_hex = *(uint32_t *) #
+ char *fmt;
+ asprintf(&fmt, "f32 %02.20e / %#010x", num, single_as_hex);
+ return fmt;
+}
+
+
+/* This allows us to initialise some doubles as pure hex */
+typedef union {
+ double d;
+ uint64_t h;
+} test_doubles;
+
+static test_doubles f64_numbers[] = {
+ {SNAN},
+ {-NAN},
+ {-INFINITY},
+ {-DBL_MAX},
+ {-FLT_MAX-1.0},
+ {-FLT_MAX},
+ {-1.111E+31},
+ {-1.111E+30}, /* half prec */
+ {-2.0}, {-1.0},
+ {-DBL_MIN},
+ {-FLT_MIN},
+ {0.0},
+ {FLT_MIN},
+ {2.98023224e-08},
+ {5.96046E-8}, /* min positive FP16 subnormal */
+ {6.09756E-5}, /* max subnormal FP16 */
+ {6.10352E-5}, /* min positive normal FP16 */
+ {1.0},
+ {1.0009765625}, /* smallest float after 1.0 FP16 */
+ {DBL_MIN},
+ {1.3789972848607228e-308},
+ {1.4914738736681624e-308},
+ {1.0}, {2.0},
+ {M_E}, {M_PI},
+ {65503.0},
+ {65504.0}, /* max FP16 */
+ {65505.0},
+ {131007.0},
+ {131008.0}, /* max AFP */
+ {131009.0},
+ {.h = 0x41dfffffffc00000 }, /* to int = 0x7fffffff */
+ {FLT_MAX},
+ {FLT_MAX + 1.0},
+ {DBL_MAX},
+ {INFINITY},
+ {NAN},
+ {.h = 0x7ff0000000000001}, /* SNAN */
+ {SNAN},
+};
+
+const int num_f64 = ARRAY_SIZE(f64_numbers);
+
+double get_f64(int i) {
+ return f64_numbers[i % num_f64].d;
+}
+
+char *fmt_f64(double num) {
+ uint64_t double_as_hex = *(uint64_t *) #
+ char *fmt;
+ asprintf(&fmt, "f64 %02.20e / %#020" PRIx64, num, double_as_hex);
+ return fmt;
+}
+
+/*
+ * Float flags
+ */
+char *fmt_flags(void)
+{
+ int flags = fetestexcept(FE_ALL_EXCEPT);
+ char *fmt;
+
+ if (flags) {
+ asprintf(&fmt, "%s%s%s%s%s",
+ flags & FE_OVERFLOW ? "OVERFLOW " : "",
+ flags & FE_UNDERFLOW ? "UNDERFLOW " : "",
+ flags & FE_DIVBYZERO ? "DIV0 " : "",
+ flags & FE_INEXACT ? "INEXACT " : "",
+ flags & FE_INVALID ? "INVALID" : "");
+ } else {
+ asprintf(&fmt, "OK");
+ }
+
+ return fmt;
+}
diff --git a/tests/tcg/multiarch/float_helpers.h b/tests/tcg/multiarch/float_helpers.h
new file mode 100644
index 00000000000..4a1e2f3853a
--- /dev/null
+++ b/tests/tcg/multiarch/float_helpers.h
@@ -0,0 +1,26 @@
+/*
+ * Common Float Helpers
+ *
+ * Copyright (c) 2019 Linaro
+ *
+ * SPDX-License-Identifier: GPL-3.0-or-later
+ */
+
+#include <inttypes.h>
+
+/* Number of constants in each table */
+extern const int num_f16;
+extern const int num_f32;
+extern const int num_f64;
+
+/* Accessor helpers */
+uint16_t get_f16(int i); /* use _Float16 when we can */
+float get_f32(int i);
+double get_f64(int i);
+
+/* Return format strings, free after use */
+char * fmt_f16(uint16_t);
+char * fmt_f32(float);
+char * fmt_f64(double);
+/* exception flags */
+char * fmt_flags(void);
diff --git a/tests/tcg/multiarch/float_madds.c b/tests/tcg/multiarch/float_madds.c
new file mode 100644
index 00000000000..bc11eea9084
--- /dev/null
+++ b/tests/tcg/multiarch/float_madds.c
@@ -0,0 +1,78 @@
+/*
+ * Fused Multiply Add (Single)
+ *
+ * Copyright (c) 2019 Linaro
+ *
+ * SPDX-License-Identifier: GPL-3.0-or-later
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include <float.h>
+#include <fenv.h>
+
+#include "float_helpers.h"
+
+#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
+
+typedef struct {
+ int flag;
+ char *desc;
+} float_mapping;
+
+float_mapping round_flags[] = {
+ { FE_TONEAREST, "to nearest" },
+ { FE_UPWARD, "upwards" },
+ { FE_DOWNWARD, "downwards" },
+ { FE_TOWARDZERO, "to zero" }
+};
+
+void print_result(float a, float b, float c, float r)
+{
+ char *a_fmt, *b_fmt, *c_fmt, *r_fmt, *flag_fmt;
+
+ a_fmt = fmt_f32(a);
+ b_fmt = fmt_f32(b);
+ c_fmt = fmt_f32(c);
+ r_fmt = fmt_f32(r);
+ flag_fmt = fmt_flags();
+
+ printf("%s * %s + %s = %s (%s)\n",
+ a_fmt, b_fmt, c_fmt, r_fmt, flag_fmt);
+
+ free(a_fmt);
+ free(b_fmt);
+ free(c_fmt);
+ free(r_fmt);
+ free(flag_fmt);
+}
+
+
+int main(int argc, char *argv[argc])
+{
+ int i, j, k, l;
+ float a, b, c, r;
+
+ for (i = 0; i < ARRAY_SIZE(round_flags); ++i) {
+ fesetround(round_flags[i].flag);
+ printf("### Rounding %s\n", round_flags[i].desc);
+ for (j = 0; j < num_f32; j += 3) {
+ for (k = 1; k < num_f32; k += 3 ) {
+ for (l = 2; l < num_f32; l += 3) {
+ a = get_f32(j);
+ b = get_f32(k);
+ c = get_f32(l);
+ feclearexcept(FE_ALL_EXCEPT);
+
+ /* must be built with -O2 to generate fused op */
+ r = a * b + c;
+
+ print_result(a, b, c, r);
+ }
+ }
+ }
+ }
+
+ return 0;
+}
--
2.20.1
Dave ran the above testcase on:
> processor : 0
> cpu : POWER8E (raw), altivec supported
> clock : 3325.000000MHz
> revision : 2.1 (pvr 004b 0201)
And there are no diffs with what you currently get from master. So I think the invalid flag fault is fixed by a previous commit and the potential precision faults don't get picked up by the test case. I guess we could be a bit smarted about testing the limits.
On 9/13/19 8:49 AM, Alex Bennée wrote:
> +static float f32_numbers[] = {
> + -SNANF,
> + -NAN,
> + -INFINITY,
> + -FLT_MAX,
> + -1.111E+31,
> + -1.111E+30,
> + -1.08700982e-12,
> + -1.78051176e-20,
> + -FLT_MIN,
> + 0.0,
> + FLT_MIN,
> + 2.98023224e-08,
> + 5.96046E-8, /* min positive FP16 subnormal */
> + 6.09756E-5, /* max subnormal FP16 */
> + 6.10352E-5, /* min positive normal FP16 */
> + 1.0,
> + 1.0009765625, /* smallest float after 1.0 FP16 */
> + 2.0,
> + M_E, M_PI,
> + 65503.0,
> + 65504.0, /* max FP16 */
> + 65505.0,
> + 131007.0,
> + 131008.0, /* max AFP */
> + 131009.0,
> + 1.111E+30,
> + FLT_MAX,
> + INFINITY,
> + NAN,
> + SNANF
> +};
I've noticed that Glibc prefers to use hex representation for float values, to ensure an accurate representation. If you care to do so, here they are:
static float f32_numbers[] = {
-SNANF,
-NAN,
-INFINITY,
-FLT_MAX,
-0x1.1874b2p+103,
-0x1.c0bab6p+99,
-0x1.31f75p-40,
-0x1.505444p-66,
-FLT_MIN,
0.0,
FLT_MIN,
0x1p-25,
0x1.ffffe6p-25, /* min positive FP16 subnormal */
0x1.ff801ap-15, /* max subnormal FP16 */
0x1.00000cp-14, /* min positive normal FP16 */
1.0,
0x1.004p+0, /* smallest float after 1.0 FP16 */
2.0,
M_E, M_PI,
0x1.ffbep+15,
0x1.ffcp+15, /* max FP16 */
0x1.ffc2p+15,
0x1.ffbfp+16,
0x1.ffcp+16, /* max AFP */
0x1.ffc1p+16,
0x1.c0bab6p+99,
FLT_MAX,
INFINITY,
NAN,
SNANF
};
PC
Richard Henderson <email address hidden> writes:
> On 9/13/19 9:49 AM, Alex Bennée wrote:
>> + /* must be built with -O2 to generate fused op */
>> + r = a * b + c;
>
> I would prefer to use fmaf() or __builtin_fmaf() here.
>
> Although you'll need to link with -lm just in case the
> target doesn't support an instruction for fmaf and so
> the builtin expands to the standard library call.
I can do that - we have other tests that link to libm.
I was expecting to see more breakage but the ppc64 tests all passed (or
at least against the power8 David ran it on). What am I missing to hit
the cases you know are broken?
I've also experimented with reducing the number of iterations because if
we want to have golden references we probably don't want to dump several
hundred kilobytes of "golden" references into the source tree.
> I also like Paul's suggestion to use hex float constants.
Hmm I guess - look a bit weird but I guess that's lack of familiarity.
Is is still normalised? I guess the frac shows up (without the implicit
bit).
>
>
> r~
--
Alex Bennée
[Expired for QEMU because there has been no activity for 60 days.]
|