about summary refs log tree commit diff stats
path: root/miasm2/jitter/vm_mngr.c
blob: bd1de2f497b4b9ecc12e386c1dbe3b93ac6158da (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
/*
** Copyright (C) 2011 EADS France, Fabrice Desclaux <fabrice.desclaux@eads.net>
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License along
** with this program; if not, write to the Free Software Foundation, Inc.,
** 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "vm_mngr.h"

#include <inttypes.h>

#include <stdio.h>
#include <stdlib.h>

#include "queue.h"



/****************memory manager**************/




#define MIN(a,b)  (((a)<(b))?(a):(b))
#define MAX(a,b)  (((a)>(b))?(a):(b))

// #define DEBUG_MIASM_AUTOMOD_CODE

void memory_access_list_init(struct memory_access_list * access)
{
	access->array = NULL;
	access->allocated = 0;
	access->num = 0;
}

void memory_access_list_reset(struct memory_access_list * access)
{
	if (access->array) {
		free(access->array);
		access->array = NULL;
	}
	access->allocated = 0;
	access->num = 0;
}

void memory_access_list_add(struct memory_access_list * access, uint64_t start, uint64_t stop)
{
	if (access->num >= access->allocated) {
		if (access->allocated == 0)
			access->allocated = 1;
		else
			access->allocated *= 2;
		access->array = realloc(access->array, access->allocated * sizeof(struct memory_access));
		if (access->array == NULL) {
			fprintf(stderr, "cannot realloc struct memory_access access->array\n");
			exit(EXIT_FAILURE);
		}
	}
	access->array[access->num].start = start;
	access->array[access->num].stop = stop;
	access->num += 1;
}



uint16_t set_endian16(vm_mngr_t* vm_mngr, uint16_t val)
{
	if (vm_mngr->sex == __BYTE_ORDER)
		return val;
	else
		return Endian16_Swap(val);
}

uint32_t set_endian32(vm_mngr_t* vm_mngr, uint32_t val)
{
	if (vm_mngr->sex == __BYTE_ORDER)
		return val;
	else
		return Endian32_Swap(val);
}

uint64_t set_endian64(vm_mngr_t* vm_mngr, uint64_t val)
{
	if (vm_mngr->sex == __BYTE_ORDER)
		return val;
	else
		return Endian64_Swap(val);
}

void print_val(uint64_t base, uint64_t addr)
{
	uint64_t *ptr = (uint64_t *) (intptr_t) addr;
	fprintf(stderr, "addr 0x%"PRIX64" val 0x%"PRIX64"\n", addr-base, *ptr);
}

int midpoint(int imin, int imax)
{
	return (imin + imax) / 2;
}


int find_page_node(struct memory_page_node * array, uint64_t key, int imin, int imax)
{
	// continue searching while [imin,imax] is not empty
	while (imin <= imax) {
		// calculate the midpoint for roughly equal partition
		int imid = midpoint(imin, imax);
		if(array[imid].ad <= key && key < array[imid].ad + array[imid].size)
			// key found at index imid
			return imid;
		// determine which subarray to search
		else if (array[imid].ad < key)
			// change min index to search upper subarray
			imin = imid + 1;
		else
			// change max index to search lower subarray
			imax = imid - 1;
	}
	// key was not found
	return -1;
}

struct memory_page_node * get_memory_page_from_address(vm_mngr_t* vm_mngr, uint64_t ad, int raise_exception)
{
	struct memory_page_node * mpn;
	int i;

	i = find_page_node(vm_mngr->memory_pages_array,
			   ad,
			   0,
			   vm_mngr->memory_pages_number - 1);
	if (i >= 0) {
		mpn = &vm_mngr->memory_pages_array[i];
		if ((mpn->ad <= ad) && (ad < mpn->ad + mpn->size))
			return mpn;
	}
	if (raise_exception) {
		fprintf(stderr, "WARNING: address 0x%"PRIX64" is not mapped in virtual memory:\n", ad);
		vm_mngr->exception_flags |= EXCEPT_ACCESS_VIOL;
	}
	return NULL;
}

static uint64_t memory_page_read(vm_mngr_t* vm_mngr, unsigned int my_size, uint64_t ad)
{
	struct memory_page_node * mpn;
	unsigned char * addr;
	uint64_t ret = 0;
	struct memory_breakpoint_info * b;


	mpn = get_memory_page_from_address(vm_mngr, ad, 1);
	if (!mpn)
		return 0;

	if ((mpn->access & PAGE_READ) == 0){
		fprintf(stderr, "access to non readable page!! %"PRIX64"\n", ad);
		vm_mngr->exception_flags |= EXCEPT_ACCESS_VIOL;
		return 0;
	}

	/* check read breakpoint */
	LIST_FOREACH(b, &vm_mngr->memory_breakpoint_pool, next){
		if ((b->access & BREAKPOINT_READ) == 0)
			continue;
		if ((b->ad <= ad) && (ad < b->ad + b->size))
			vm_mngr->exception_flags |= EXCEPT_BREAKPOINT_MEMORY;
	}


	addr = &((unsigned char*)mpn->ad_hp)[ad - mpn->ad];

	/* read fits in a page */
	if (ad - mpn->ad + my_size/8 <= mpn->size){
		switch(my_size){
		case 8:
			ret = *((unsigned char*)addr)&0xFF;
			break;
		case 16:
			ret = *((unsigned short*)addr)&0xFFFF;
			ret = set_endian16(vm_mngr, (uint16_t)ret);
			break;
		case 32:
			ret = *((unsigned int*)addr)&0xFFFFFFFF;
			ret = set_endian32(vm_mngr, (uint32_t)ret);
			break;
		case 64:
			ret = *((uint64_t*)addr)&0xFFFFFFFFFFFFFFFFULL;
			ret = set_endian64(vm_mngr, ret);
			break;
		default:
			fprintf(stderr, "Bad memory access size %d\n", my_size);
			exit(EXIT_FAILURE);
			break;
		}
	}
	/* read is multiple page wide */
	else{
		unsigned int new_size = my_size;
		int index = 0;
		while (new_size){
			mpn = get_memory_page_from_address(vm_mngr, ad, 1);
			if (!mpn)
				return 0;
			addr = &((unsigned char*)mpn->ad_hp)[ad - mpn->ad];
			ret |= ((uint64_t)(*((unsigned char*)addr)&0xFF))<<(index);
			index +=8;
			new_size -= 8;
			ad ++;
		}
		switch(my_size){
		case 8:
			ret = ret;
			break;
		case 16:
			ret = set_endian16(vm_mngr, (uint16_t)ret);
			break;
		case 32:
			ret = set_endian32(vm_mngr, (uint32_t)ret);
			break;
		case 64:
			ret = set_endian64(vm_mngr, ret);
			break;
		default:
			fprintf(stderr, "Bad memory access size %d\n", my_size);
			exit(EXIT_FAILURE);
			break;
		}
	}
	return ret;
}

static void memory_page_write(vm_mngr_t* vm_mngr, unsigned int my_size,
			      uint64_t ad, uint64_t src)
{
	struct memory_page_node * mpn;
	unsigned char * addr;
	struct memory_breakpoint_info * b;

	mpn = get_memory_page_from_address(vm_mngr, ad, 1);
	if (!mpn)
		return;

	if ((mpn->access & PAGE_WRITE) == 0){
		fprintf(stderr, "access to non writable page!! %"PRIX64"\n", ad);
		vm_mngr->exception_flags |= EXCEPT_ACCESS_VIOL;
		return ;
	}

	/* check read breakpoint*/
	LIST_FOREACH(b, &vm_mngr->memory_breakpoint_pool, next){
		if ((b->access & BREAKPOINT_WRITE) == 0)
			continue;
		if ((b->ad <= ad) && (ad < b->ad + b->size))
			vm_mngr->exception_flags |= EXCEPT_BREAKPOINT_MEMORY;
	}

	addr = &((unsigned char*)mpn->ad_hp)[ad - mpn->ad];

	/* write fits in a page */
	if (ad - mpn->ad + my_size/8 <= mpn->size){
		switch(my_size){
		case 8:
			*((unsigned char*)addr) = src&0xFF;
			break;
		case 16:
			src = set_endian16(vm_mngr, (uint16_t)src);
			*((unsigned short*)addr) = src&0xFFFF;
			break;
		case 32:
			src = set_endian32(vm_mngr, (uint32_t)src);
			*((unsigned int*)addr) = src&0xFFFFFFFF;
			break;
		case 64:
			src = set_endian64(vm_mngr, src);
			*((uint64_t*)addr) = src&0xFFFFFFFFFFFFFFFFULL;
			break;
		default:
			fprintf(stderr, "Bad memory access size %d\n", my_size);
			exit(EXIT_FAILURE);
			break;
		}
	}
	/* write is multiple page wide */
	else{
		switch(my_size){

		case 8:
			src = src;
			break;
		case 16:
			src = set_endian16(vm_mngr, (uint16_t)src);
			break;
		case 32:
			src = set_endian32(vm_mngr, (uint32_t)src);
			break;
		case 64:
			src = set_endian64(vm_mngr, src);
			break;
		default:
			fprintf(stderr, "Bad memory access size %d\n", my_size);
			exit(EXIT_FAILURE);
			break;
		}
		while (my_size){
			mpn = get_memory_page_from_address(vm_mngr, ad, 1);
			if (!mpn)
				return;

			addr = &((unsigned char*)mpn->ad_hp)[ad - mpn->ad];
			*((unsigned char*)addr) = src&0xFF;
			my_size -= 8;
			src >>=8;
			ad ++;
		}
	}
}

// ##################

void dump_code_bloc(vm_mngr_t* vm_mngr)
{
	struct code_bloc_node * cbp;
	LIST_FOREACH(cbp, &vm_mngr->code_bloc_pool, next){
		fprintf(stderr, "%"PRIX64"%"PRIX64"\n", cbp->ad_start,  cbp->ad_stop);
	}

}

void add_range_to_list(struct memory_access_list * access, uint64_t addr1, uint64_t addr2)
{
	if (access->num > 0) {
		/* Check match on upper bound */
		 if (access->array[access->num-1].stop == addr1) {
			 access->array[access->num-1].stop = addr2;
			 return;
		 }

		/* Check match on lower bound */
		 if (access->array[0].start == addr2) {
			 access->array[0].start = addr1;
			 return;
		 }
	}

	/* No merge, add to the list */
	memory_access_list_add(access, addr1, addr2);
}


void add_mem_read(vm_mngr_t* vm_mngr, uint64_t addr, uint64_t size)
{
	add_range_to_list(&(vm_mngr->memory_r), addr, addr + size);
}

void add_mem_write(vm_mngr_t* vm_mngr, uint64_t addr, uint64_t size)
{
	add_range_to_list(&(vm_mngr->memory_w), addr, addr + size);
}

void check_invalid_code_blocs(vm_mngr_t* vm_mngr)
{
	int i;
	struct code_bloc_node * cbp;
	for (i=0;i<vm_mngr->memory_w.num; i++) {
		if (vm_mngr->exception_flags & EXCEPT_CODE_AUTOMOD)
			break;
		if (vm_mngr->memory_w.array[i].stop <= vm_mngr->code_bloc_pool_ad_min ||
		    vm_mngr->memory_w.array[i].start >=vm_mngr->code_bloc_pool_ad_max)
			continue;

		LIST_FOREACH(cbp, &vm_mngr->code_bloc_pool, next){
			if ((cbp->ad_start < vm_mngr->memory_w.array[i].stop) &&
			    (vm_mngr->memory_w.array[i].start < cbp->ad_stop)){
#ifdef DEBUG_MIASM_AUTOMOD_CODE
				fprintf(stderr, "**********************************\n");
				fprintf(stderr, "self modifying code %"PRIX64" %"PRIX64"\n",
					vm_mngr->memory_w.array[i].start,
					vm_mngr->memory_w.array[i].stop);
				fprintf(stderr, "**********************************\n");
#endif
				vm_mngr->exception_flags |= EXCEPT_CODE_AUTOMOD;
				break;
			}
		}
	}
}


void check_memory_breakpoint(vm_mngr_t* vm_mngr)
{
	int i;
	struct memory_breakpoint_info * memory_bp;

	/* Check memory breakpoints */
	LIST_FOREACH(memory_bp, &vm_mngr->memory_breakpoint_pool, next) {
		if (vm_mngr->exception_flags & EXCEPT_BREAKPOINT_MEMORY)
			break;
		if (memory_bp->access & BREAKPOINT_READ) {
			for (i=0;i<vm_mngr->memory_r.num; i++) {
				if ((memory_bp->ad < vm_mngr->memory_r.array[i].stop) &&
				    (vm_mngr->memory_r.array[i].start < memory_bp->ad + memory_bp->size)) {
					vm_mngr->exception_flags |= EXCEPT_BREAKPOINT_MEMORY;
					break;
				}
			}
		}
		if (memory_bp->access & BREAKPOINT_WRITE) {
			for (i=0;i<vm_mngr->memory_w.num; i++) {
				if ((memory_bp->ad < vm_mngr->memory_w.array[i].stop) &&
				    (vm_mngr->memory_w.array[i].start < memory_bp->ad + memory_bp->size)) {
					vm_mngr->exception_flags |= EXCEPT_BREAKPOINT_MEMORY;
					break;
				}
			}
		}
	}
}


PyObject* get_memory_pylist(vm_mngr_t* vm_mngr, struct memory_access_list* memory_list)
{
	int i;
	PyObject *pylist;
	PyObject *range;
	pylist = PyList_New(memory_list->num);
	for (i=0;i<memory_list->num;i++) {
		range = PyTuple_New(2);
		PyTuple_SetItem(range, 0, PyLong_FromUnsignedLongLong((uint64_t)memory_list->array[i].start));
		PyTuple_SetItem(range, 1, PyLong_FromUnsignedLongLong((uint64_t)memory_list->array[i].stop));
		PyList_SetItem(pylist, i, range);
	}
	return pylist;

}

PyObject* get_memory_read(vm_mngr_t* vm_mngr)
{
	return get_memory_pylist(vm_mngr, &vm_mngr->memory_r);
}

PyObject* get_memory_write(vm_mngr_t* vm_mngr)
{
	return get_memory_pylist(vm_mngr, &vm_mngr->memory_w);
}

void vm_MEM_WRITE_08(vm_mngr_t* vm_mngr, uint64_t addr, unsigned char src)
{
	add_mem_write(vm_mngr, addr, 1);
	memory_page_write(vm_mngr, 8, addr, src);
}

void vm_MEM_WRITE_16(vm_mngr_t* vm_mngr, uint64_t addr, unsigned short src)
{
	add_mem_write(vm_mngr, addr, 2);
	memory_page_write(vm_mngr, 16, addr, src);
}
void vm_MEM_WRITE_32(vm_mngr_t* vm_mngr, uint64_t addr, unsigned int src)
{
	add_mem_write(vm_mngr, addr, 4);
	memory_page_write(vm_mngr, 32, addr, src);
}
void vm_MEM_WRITE_64(vm_mngr_t* vm_mngr, uint64_t addr, uint64_t src)
{
	add_mem_write(vm_mngr, addr, 8);
	memory_page_write(vm_mngr, 64, addr, src);
}

unsigned char vm_MEM_LOOKUP_08(vm_mngr_t* vm_mngr, uint64_t addr)
{
	unsigned char ret;
	add_mem_read(vm_mngr, addr, 1);
	ret = (unsigned char)memory_page_read(vm_mngr, 8, addr);
	return ret;
}
unsigned short vm_MEM_LOOKUP_16(vm_mngr_t* vm_mngr, uint64_t addr)
{
	unsigned short ret;
	add_mem_read(vm_mngr, addr, 2);
	ret = (unsigned short)memory_page_read(vm_mngr, 16, addr);
	return ret;
}
unsigned int vm_MEM_LOOKUP_32(vm_mngr_t* vm_mngr, uint64_t addr)
{
	unsigned int ret;
	add_mem_read(vm_mngr, addr, 4);
	ret = (unsigned int)memory_page_read(vm_mngr, 32, addr);
	return ret;
}
uint64_t vm_MEM_LOOKUP_64(vm_mngr_t* vm_mngr, uint64_t addr)
{
	uint64_t ret;
	add_mem_read(vm_mngr, addr, 8);
	ret = memory_page_read(vm_mngr, 64, addr);
	return ret;
}


int vm_read_mem(vm_mngr_t* vm_mngr, uint64_t addr, char** buffer_ptr, uint64_t size)
{
       char* buffer;
       uint64_t len;
       struct memory_page_node * mpn;

       buffer = malloc(size);
       *buffer_ptr = buffer;
       if (!buffer){
	      fprintf(stderr, "Error: cannot alloc read\n");
	      exit(EXIT_FAILURE);
       }

       /* read is multiple page wide */
       while (size){
	      mpn = get_memory_page_from_address(vm_mngr, addr, 1);
	      if (!mpn){
		      free(*buffer_ptr);
		      PyErr_SetString(PyExc_RuntimeError, "Error: cannot find address");
		      return -1;
	      }

	      len = MIN(size, mpn->size - (addr - mpn->ad));
	      memcpy(buffer, (char*)mpn->ad_hp + (addr - mpn->ad), len);
	      buffer += len;
	      addr += len;
	      size -= len;
       }

       return 0;
}

int vm_write_mem(vm_mngr_t* vm_mngr, uint64_t addr, char *buffer, uint64_t size)
{
       uint64_t len;
       struct memory_page_node * mpn;

       /* write is multiple page wide */
       while (size){
	      mpn = get_memory_page_from_address(vm_mngr, addr, 1);
	      if (!mpn){
		      PyErr_SetString(PyExc_RuntimeError, "Error: cannot find address");
		      return -1;
	      }

	      len = MIN(size, mpn->size - (addr - mpn->ad));
	      memcpy((char*)mpn->ad_hp + (addr-mpn->ad), buffer, len);
	      buffer += len;
	      addr += len;
	      size -= len;
       }

       return 0;
}



int is_mapped(vm_mngr_t* vm_mngr, uint64_t addr, uint64_t size)
{
       uint64_t len;
       struct memory_page_node * mpn;

       /* test multiple page wide */
       while (size){
	      mpn = get_memory_page_from_address(vm_mngr, addr, 0);
	      if (!mpn)
		      return 0;

	      len = MIN(size, mpn->size - (addr - mpn->ad));
	      addr += len;
	      size -= len;
       }

       return 1;
}

struct memory_page_node * create_memory_page_node(uint64_t ad, unsigned int size, unsigned int access, char* name)
{
	struct memory_page_node * mpn;
	void* ad_hp;

	mpn = malloc(sizeof(*mpn));
	if (!mpn){
		fprintf(stderr, "Error: cannot alloc mpn\n");
		return NULL;
	}
	ad_hp = malloc(size);
	if (!ad_hp){
		free(mpn);
		fprintf(stderr, "Error: cannot alloc %d\n", size);
		return NULL;
	}
	mpn->name = malloc(strlen(name) + 1);
	if (!mpn->name){
		free(mpn);
		free(ad_hp);
		fprintf(stderr, "Error: cannot alloc\n");
		return NULL;
	}

	mpn->ad = ad;
	mpn->size = size;
	mpn->access = access;
	mpn->ad_hp = ad_hp;
	strcpy(mpn->name, name);

	return mpn;
}


struct code_bloc_node * create_code_bloc_node(uint64_t ad_start, uint64_t ad_stop)
{
	struct code_bloc_node * cbp;

	cbp = malloc(sizeof(*cbp));
	if (!cbp){
		fprintf(stderr, "Error: cannot alloc cbp\n");
		exit(EXIT_FAILURE);
	}

	cbp->ad_start = ad_start;
	cbp->ad_stop = ad_stop;

	return cbp;
}


void add_code_bloc(vm_mngr_t* vm_mngr, struct code_bloc_node* cbp)
{
	LIST_INSERT_HEAD(&vm_mngr->code_bloc_pool, cbp, next);
	if (vm_mngr->code_bloc_pool_ad_min> cbp->ad_start)
		vm_mngr->code_bloc_pool_ad_min = cbp->ad_start;
	if (vm_mngr->code_bloc_pool_ad_max< cbp->ad_stop)
		vm_mngr->code_bloc_pool_ad_max = cbp->ad_stop;
}

void dump_code_bloc_pool(vm_mngr_t* vm_mngr)
{
	struct code_bloc_node * cbp;

	LIST_FOREACH(cbp, &vm_mngr->code_bloc_pool, next){
		printf("ad start %"PRIX64" ad_stop %"PRIX64"\n",
		       cbp->ad_start,
		       cbp->ad_stop);
	}
}


void init_memory_page_pool(vm_mngr_t* vm_mngr)
{

	vm_mngr->memory_pages_number = 0;
	vm_mngr->memory_pages_array = NULL;
}

void init_code_bloc_pool(vm_mngr_t* vm_mngr)
{
	LIST_INIT(&vm_mngr->code_bloc_pool);
	vm_mngr->code_bloc_pool_ad_min = 0xffffffffffffffffULL;
	vm_mngr->code_bloc_pool_ad_max = 0;

	memory_access_list_init(&(vm_mngr->memory_r));
	memory_access_list_init(&(vm_mngr->memory_w));


}

void init_memory_breakpoint(vm_mngr_t* vm_mngr)
{
	LIST_INIT(&vm_mngr->memory_breakpoint_pool);
}


void reset_memory_page_pool(vm_mngr_t* vm_mngr)
{
	struct memory_page_node * mpn;
	int i;
	for (i=0;i<vm_mngr->memory_pages_number; i++) {
		mpn = &vm_mngr->memory_pages_array[i];
		free(mpn->ad_hp);
		free(mpn->name);
	}
	free(vm_mngr->memory_pages_array);
	vm_mngr->memory_pages_array = NULL;
	vm_mngr->memory_pages_number = 0;
}


void reset_code_bloc_pool(vm_mngr_t* vm_mngr)
{
	struct code_bloc_node * cbp;


	while (!LIST_EMPTY(&vm_mngr->code_bloc_pool)) {
		cbp = LIST_FIRST(&vm_mngr->code_bloc_pool);
		LIST_REMOVE(cbp, next);
		free(cbp);
	}
	vm_mngr->code_bloc_pool_ad_min = 0xffffffffffffffffULL;
	vm_mngr->code_bloc_pool_ad_max = 0;
}

void reset_memory_access(vm_mngr_t* vm_mngr)
{
	memory_access_list_reset(&(vm_mngr->memory_r));
	memory_access_list_reset(&(vm_mngr->memory_w));
}

void reset_memory_breakpoint(vm_mngr_t* vm_mngr)
{
	struct memory_breakpoint_info * mpn;

	while (!LIST_EMPTY(&vm_mngr->memory_breakpoint_pool)) {
		mpn = LIST_FIRST(&vm_mngr->memory_breakpoint_pool);
		LIST_REMOVE(mpn, next);
		free(mpn);
	}

}



/* We don't use dichotomy here for the insertion */
int is_mpn_in_tab(vm_mngr_t* vm_mngr, struct memory_page_node* mpn_a)
{
	struct memory_page_node * mpn;
	int i;

	for (i=0;i<vm_mngr->memory_pages_number; i++) {
		mpn = &vm_mngr->memory_pages_array[i];
		if (mpn->ad >= mpn_a->ad + mpn_a->size)
			continue;
		if (mpn->ad + mpn->size  <= mpn_a->ad)
			continue;
		fprintf(stderr,
			"Error: attempt to add page (0x%"PRIX64" 0x%"PRIX64") "
			"overlapping page (0x%"PRIX64" 0x%"PRIX64")\n",
			mpn_a->ad, mpn_a->ad + mpn_a->size,
			mpn->ad, mpn->ad + mpn->size);

		return 1;
	}

	return 0;
}


/* We don't use dichotomy here for the insertion */
void add_memory_page(vm_mngr_t* vm_mngr, struct memory_page_node* mpn_a)
{
	struct memory_page_node * mpn;
	int i;

	for (i=0; i < vm_mngr->memory_pages_number; i++) {
		mpn = &vm_mngr->memory_pages_array[i];
		if (mpn->ad < mpn_a->ad)
			continue;
		break;
	}
	vm_mngr->memory_pages_array = realloc(vm_mngr->memory_pages_array,
					      sizeof(struct memory_page_node) *
					      (vm_mngr->memory_pages_number+1));
	if (vm_mngr->memory_pages_array == NULL) {
		fprintf(stderr, "cannot realloc struct memory_page_node vm_mngr->memory_pages_array\n");
		exit(EXIT_FAILURE);
	}


	memmove(&vm_mngr->memory_pages_array[i+1],
		&vm_mngr->memory_pages_array[i],
		sizeof(struct memory_page_node) * (vm_mngr->memory_pages_number - i)
		);

	vm_mngr->memory_pages_array[i] = *mpn_a;
	vm_mngr->memory_pages_number ++;

}

/* Return a char* representing the repr of vm_mngr_t object */
char* dump(vm_mngr_t* vm_mngr)
{
	char buf[0x100];
	int length;
	char *buf_final;
	int i;
	char buf_addr[0x20];
	char buf_size[0x20];
	struct memory_page_node * mpn;
	/*             0x1234567812345678 0x1234567812345678        */
	char* intro = "Addr               Size               Access Comment\n";
	size_t total_len = strlen(intro) + 1;

	buf_final = malloc(total_len);
	if (buf_final == NULL) {
		fprintf(stderr, "Error: cannot alloc char* buf_final\n");
		exit(EXIT_FAILURE);
	}
	strcpy(buf_final, intro);
	for (i=0; i< vm_mngr->memory_pages_number; i++) {
		mpn = &vm_mngr->memory_pages_array[i];
		snprintf(buf_addr, sizeof(buf_addr),
			 "0x%"PRIX64, (uint64_t)mpn->ad);
		snprintf(buf_size, sizeof(buf_size),
			 "0x%"PRIX64, (uint64_t)mpn->size);

		length = snprintf(buf, sizeof(buf) - 1,
				  "%-18s %-18s %c%c%c    %s",
				  buf_addr,
				  buf_size,
				  mpn->access & PAGE_READ? 'R':'_',
				  mpn->access & PAGE_WRITE? 'W':'_',
				  mpn->access & PAGE_EXEC? 'X':'_',
				  mpn->name
				  );
		strcat(buf, "\n");
		total_len += length + 1 + 1;
		buf_final = realloc(buf_final, total_len);
		if (buf_final == NULL) {
			fprintf(stderr, "cannot realloc char* buf_final\n");
			exit(EXIT_FAILURE);
		}
		strcat(buf_final, buf);
	}

	return buf_final;
}

void dump_memory_breakpoint_pool(vm_mngr_t* vm_mngr)
{
	struct memory_breakpoint_info * mpn;

	LIST_FOREACH(mpn, &vm_mngr->memory_breakpoint_pool, next){
		printf("ad %"PRIX64" size %"PRIX64" access %"PRIX64"\n",
		       mpn->ad,
		       mpn->size,
		       mpn->access
		       );
	}
}


void add_memory_breakpoint(vm_mngr_t* vm_mngr, uint64_t ad, uint64_t size, unsigned int access)
{
	struct memory_breakpoint_info * mpn_a;
	mpn_a = malloc(sizeof(*mpn_a));
	if (!mpn_a) {
		fprintf(stderr, "Error: cannot alloc\n");
		exit(EXIT_FAILURE);
	}
	mpn_a->ad = ad;
	mpn_a->size = size;
	mpn_a->access = access;

	LIST_INSERT_HEAD(&vm_mngr->memory_breakpoint_pool, mpn_a, next);

}

void remove_memory_breakpoint(vm_mngr_t* vm_mngr, uint64_t ad, unsigned int access)
{
	struct memory_breakpoint_info * mpn;

	LIST_FOREACH(mpn, &vm_mngr->memory_breakpoint_pool, next){
		if (mpn->ad == ad && mpn->access == access)
			LIST_REMOVE(mpn, next);
	}

}


/********************************************/

void hexdump(char* m, unsigned int l)
{
  unsigned int i, j, last;
  last = 0;
  for (i=0;i<l;i++){
      if (!(i%0x10) && i){
      last = i;
      printf("    ");
      for (j=-0x10;j<0;j++){
	      if (isprint(m[i+j])){
		      printf("%c", m[i+j]);
	      }
	      else{
		      printf(".");
	      }
      }
      printf("\n");
      }
      printf("%.2X ", m[i]&0xFF);
  }
  l-=last;
  if (l){
    for (j=i;j<last+0x10;j++)
      printf("   ");
    printf("    ");
    for (j = 0;l;j++){
      if (isprint(m[last+j])){
	      printf("%c", m[last+j]);
      }
      else{
	      printf(".");
      }
      l--;
    }
  }
  printf("\n");

}


// Return vm_mngr's exception flag value
_MIASM_EXPORT uint64_t get_exception_flag(vm_mngr_t* vm_mngr)
{
	return vm_mngr->exception_flags;
}