summary refs log tree commit diff stats
path: root/hw/nvme/ctrl.c
diff options
context:
space:
mode:
authorKlaus Jensen <k.jensen@samsung.com>2021-04-14 22:14:30 +0200
committerKlaus Jensen <k.jensen@samsung.com>2021-05-17 09:19:00 +0200
commit88eea45c536470cd3c43440cbb1cd4d3b9fa519c (patch)
treeb5b4d753aa955348af07777518cd0a60b06e5e56 /hw/nvme/ctrl.c
parent49ad39c55a2086637bbde4616491dfee17a142e7 (diff)
downloadfocaccia-qemu-88eea45c536470cd3c43440cbb1cd4d3b9fa519c.tar.gz
focaccia-qemu-88eea45c536470cd3c43440cbb1cd4d3b9fa519c.zip
hw/nvme: move nvme emulation out of hw/block
With the introduction of the nvme-subsystem device we are really
cluttering up the hw/block directory.

As suggested by Philippe previously, move the nvme emulation to hw/nvme.

Suggested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
Reviewed-by: Keith Busch <kbusch@kernel.org>
Diffstat (limited to 'hw/nvme/ctrl.c')
-rw-r--r--hw/nvme/ctrl.c6365
1 files changed, 6365 insertions, 0 deletions
diff --git a/hw/nvme/ctrl.c b/hw/nvme/ctrl.c
new file mode 100644
index 0000000000..0bcaf7192f
--- /dev/null
+++ b/hw/nvme/ctrl.c
@@ -0,0 +1,6365 @@
+/*
+ * QEMU NVM Express Controller
+ *
+ * Copyright (c) 2012, Intel Corporation
+ *
+ * Written by Keith Busch <keith.busch@intel.com>
+ *
+ * This code is licensed under the GNU GPL v2 or later.
+ */
+
+/**
+ * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
+ *
+ *  https://nvmexpress.org/developers/nvme-specification/
+ *
+ *
+ * Notes on coding style
+ * ---------------------
+ * While QEMU coding style prefers lowercase hexadecimals in constants, the
+ * NVMe subsystem use thes format from the NVMe specifications in the comments
+ * (i.e. 'h' suffix instead of '0x' prefix).
+ *
+ * Usage
+ * -----
+ * See docs/system/nvme.rst for extensive documentation.
+ *
+ * Add options:
+ *      -drive file=<file>,if=none,id=<drive_id>
+ *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
+ *      -device nvme,serial=<serial>,id=<bus_name>, \
+ *              cmb_size_mb=<cmb_size_mb[optional]>, \
+ *              [pmrdev=<mem_backend_file_id>,] \
+ *              max_ioqpairs=<N[optional]>, \
+ *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
+ *              mdts=<N[optional]>,vsl=<N[optional]>, \
+ *              zoned.zasl=<N[optional]>, \
+ *              subsys=<subsys_id>
+ *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
+ *              zoned=<true|false[optional]>, \
+ *              subsys=<subsys_id>,detached=<true|false[optional]>
+ *
+ * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
+ * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
+ * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
+ * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
+ *
+ * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
+ * For example:
+ * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
+ *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
+ *
+ * The PMR will use BAR 4/5 exclusively.
+ *
+ * To place controller(s) and namespace(s) to a subsystem, then provide
+ * nvme-subsys device as above.
+ *
+ * nvme subsystem device parameters
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ * - `nqn`
+ *   This parameter provides the `<nqn_id>` part of the string
+ *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
+ *   of subsystem controllers. Note that `<nqn_id>` should be unique per
+ *   subsystem, but this is not enforced by QEMU. If not specified, it will
+ *   default to the value of the `id` parameter (`<subsys_id>`).
+ *
+ * nvme device parameters
+ * ~~~~~~~~~~~~~~~~~~~~~~
+ * - `subsys`
+ *   Specifying this parameter attaches the controller to the subsystem and
+ *   the SUBNQN field in the controller will report the NQN of the subsystem
+ *   device. This also enables multi controller capability represented in
+ *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
+ *   Namesapce Sharing Capabilities).
+ *
+ * - `aerl`
+ *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
+ *   of concurrently outstanding Asynchronous Event Request commands support
+ *   by the controller. This is a 0's based value.
+ *
+ * - `aer_max_queued`
+ *   This is the maximum number of events that the device will enqueue for
+ *   completion when there are no outstanding AERs. When the maximum number of
+ *   enqueued events are reached, subsequent events will be dropped.
+ *
+ * - `mdts`
+ *   Indicates the maximum data transfer size for a command that transfers data
+ *   between host-accessible memory and the controller. The value is specified
+ *   as a power of two (2^n) and is in units of the minimum memory page size
+ *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
+ *
+ * - `vsl`
+ *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
+ *   this value is specified as a power of two (2^n) and is in units of the
+ *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
+ *   KiB).
+ *
+ * - `zoned.zasl`
+ *   Indicates the maximum data transfer size for the Zone Append command. Like
+ *   `mdts`, the value is specified as a power of two (2^n) and is in units of
+ *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
+ *   defaulting to the value of `mdts`).
+ *
+ * nvme namespace device parameters
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ * - `shared`
+ *   When the parent nvme device (as defined explicitly by the 'bus' parameter
+ *   or implicitly by the most recently defined NvmeBus) is linked to an
+ *   nvme-subsys device, the namespace will be attached to all controllers in
+ *   the subsystem. If set to 'off' (the default), the namespace will remain a
+ *   private namespace and may only be attached to a single controller at a
+ *   time.
+ *
+ * - `detached`
+ *   This parameter is only valid together with the `subsys` parameter. If left
+ *   at the default value (`false/off`), the namespace will be attached to all
+ *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
+ *   namespace will be be available in the subsystem not not attached to any
+ *   controllers.
+ *
+ * Setting `zoned` to true selects Zoned Command Set at the namespace.
+ * In this case, the following namespace properties are available to configure
+ * zoned operation:
+ *     zoned.zone_size=<zone size in bytes, default: 128MiB>
+ *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
+ *
+ *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
+ *         The value 0 (default) forces zone capacity to be the same as zone
+ *         size. The value of this property may not exceed zone size.
+ *
+ *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
+ *         This value needs to be specified in 64B units. If it is zero,
+ *         namespace(s) will not support zone descriptor extensions.
+ *
+ *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
+ *         The default value means there is no limit to the number of
+ *         concurrently active zones.
+ *
+ *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
+ *         The default value means there is no limit to the number of
+ *         concurrently open zones.
+ *
+ *     zoned.cross_read=<enable RAZB, default: false>
+ *         Setting this property to true enables Read Across Zone Boundaries.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/cutils.h"
+#include "qemu/error-report.h"
+#include "qemu/log.h"
+#include "qemu/units.h"
+#include "qapi/error.h"
+#include "qapi/visitor.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/block-backend.h"
+#include "sysemu/hostmem.h"
+#include "hw/pci/msix.h"
+#include "migration/vmstate.h"
+
+#include "nvme.h"
+#include "trace.h"
+
+#define NVME_MAX_IOQPAIRS 0xffff
+#define NVME_DB_SIZE  4
+#define NVME_SPEC_VER 0x00010400
+#define NVME_CMB_BIR 2
+#define NVME_PMR_BIR 4
+#define NVME_TEMPERATURE 0x143
+#define NVME_TEMPERATURE_WARNING 0x157
+#define NVME_TEMPERATURE_CRITICAL 0x175
+#define NVME_NUM_FW_SLOTS 1
+#define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
+
+#define NVME_GUEST_ERR(trace, fmt, ...) \
+    do { \
+        (trace_##trace)(__VA_ARGS__); \
+        qemu_log_mask(LOG_GUEST_ERROR, #trace \
+            " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
+    } while (0)
+
+static const bool nvme_feature_support[NVME_FID_MAX] = {
+    [NVME_ARBITRATION]              = true,
+    [NVME_POWER_MANAGEMENT]         = true,
+    [NVME_TEMPERATURE_THRESHOLD]    = true,
+    [NVME_ERROR_RECOVERY]           = true,
+    [NVME_VOLATILE_WRITE_CACHE]     = true,
+    [NVME_NUMBER_OF_QUEUES]         = true,
+    [NVME_INTERRUPT_COALESCING]     = true,
+    [NVME_INTERRUPT_VECTOR_CONF]    = true,
+    [NVME_WRITE_ATOMICITY]          = true,
+    [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
+    [NVME_TIMESTAMP]                = true,
+    [NVME_COMMAND_SET_PROFILE]      = true,
+};
+
+static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
+    [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
+    [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
+    [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
+    [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
+    [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
+    [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
+    [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
+};
+
+static const uint32_t nvme_cse_acs[256] = {
+    [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
+    [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
+    [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
+    [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
+    [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
+    [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
+    [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
+    [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
+    [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
+    [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
+    [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
+    [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+};
+
+static const uint32_t nvme_cse_iocs_none[256];
+
+static const uint32_t nvme_cse_iocs_nvm[256] = {
+    [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
+    [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
+    [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
+};
+
+static const uint32_t nvme_cse_iocs_zoned[256] = {
+    [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
+    [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
+    [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
+    [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
+    [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
+};
+
+static void nvme_process_sq(void *opaque);
+
+static uint16_t nvme_sqid(NvmeRequest *req)
+{
+    return le16_to_cpu(req->sq->sqid);
+}
+
+static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
+                                   NvmeZoneState state)
+{
+    if (QTAILQ_IN_USE(zone, entry)) {
+        switch (nvme_get_zone_state(zone)) {
+        case NVME_ZONE_STATE_EXPLICITLY_OPEN:
+            QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
+            break;
+        case NVME_ZONE_STATE_IMPLICITLY_OPEN:
+            QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
+            break;
+        case NVME_ZONE_STATE_CLOSED:
+            QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
+            break;
+        case NVME_ZONE_STATE_FULL:
+            QTAILQ_REMOVE(&ns->full_zones, zone, entry);
+        default:
+            ;
+        }
+    }
+
+    nvme_set_zone_state(zone, state);
+
+    switch (state) {
+    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
+        QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
+        break;
+    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
+        QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
+        break;
+    case NVME_ZONE_STATE_CLOSED:
+        QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
+        break;
+    case NVME_ZONE_STATE_FULL:
+        QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
+    case NVME_ZONE_STATE_READ_ONLY:
+        break;
+    default:
+        zone->d.za = 0;
+    }
+}
+
+/*
+ * Check if we can open a zone without exceeding open/active limits.
+ * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
+ */
+static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
+{
+    if (ns->params.max_active_zones != 0 &&
+        ns->nr_active_zones + act > ns->params.max_active_zones) {
+        trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
+        return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
+    }
+    if (ns->params.max_open_zones != 0 &&
+        ns->nr_open_zones + opn > ns->params.max_open_zones) {
+        trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
+        return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
+    }
+
+    return NVME_SUCCESS;
+}
+
+static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
+{
+    hwaddr hi, lo;
+
+    if (!n->cmb.cmse) {
+        return false;
+    }
+
+    lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
+    hi = lo + int128_get64(n->cmb.mem.size);
+
+    return addr >= lo && addr < hi;
+}
+
+static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
+{
+    hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
+    return &n->cmb.buf[addr - base];
+}
+
+static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
+{
+    hwaddr hi;
+
+    if (!n->pmr.cmse) {
+        return false;
+    }
+
+    hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
+
+    return addr >= n->pmr.cba && addr < hi;
+}
+
+static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
+{
+    return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
+}
+
+static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
+{
+    hwaddr hi = addr + size - 1;
+    if (hi < addr) {
+        return 1;
+    }
+
+    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
+        memcpy(buf, nvme_addr_to_cmb(n, addr), size);
+        return 0;
+    }
+
+    if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
+        memcpy(buf, nvme_addr_to_pmr(n, addr), size);
+        return 0;
+    }
+
+    return pci_dma_read(&n->parent_obj, addr, buf, size);
+}
+
+static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, void *buf, int size)
+{
+    hwaddr hi = addr + size - 1;
+    if (hi < addr) {
+        return 1;
+    }
+
+    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
+        memcpy(nvme_addr_to_cmb(n, addr), buf, size);
+        return 0;
+    }
+
+    if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
+        memcpy(nvme_addr_to_pmr(n, addr), buf, size);
+        return 0;
+    }
+
+    return pci_dma_write(&n->parent_obj, addr, buf, size);
+}
+
+static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
+{
+    return nsid &&
+        (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
+}
+
+static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
+{
+    return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
+}
+
+static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
+{
+    return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
+}
+
+static void nvme_inc_cq_tail(NvmeCQueue *cq)
+{
+    cq->tail++;
+    if (cq->tail >= cq->size) {
+        cq->tail = 0;
+        cq->phase = !cq->phase;
+    }
+}
+
+static void nvme_inc_sq_head(NvmeSQueue *sq)
+{
+    sq->head = (sq->head + 1) % sq->size;
+}
+
+static uint8_t nvme_cq_full(NvmeCQueue *cq)
+{
+    return (cq->tail + 1) % cq->size == cq->head;
+}
+
+static uint8_t nvme_sq_empty(NvmeSQueue *sq)
+{
+    return sq->head == sq->tail;
+}
+
+static void nvme_irq_check(NvmeCtrl *n)
+{
+    if (msix_enabled(&(n->parent_obj))) {
+        return;
+    }
+    if (~n->bar.intms & n->irq_status) {
+        pci_irq_assert(&n->parent_obj);
+    } else {
+        pci_irq_deassert(&n->parent_obj);
+    }
+}
+
+static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
+{
+    if (cq->irq_enabled) {
+        if (msix_enabled(&(n->parent_obj))) {
+            trace_pci_nvme_irq_msix(cq->vector);
+            msix_notify(&(n->parent_obj), cq->vector);
+        } else {
+            trace_pci_nvme_irq_pin();
+            assert(cq->vector < 32);
+            n->irq_status |= 1 << cq->vector;
+            nvme_irq_check(n);
+        }
+    } else {
+        trace_pci_nvme_irq_masked();
+    }
+}
+
+static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
+{
+    if (cq->irq_enabled) {
+        if (msix_enabled(&(n->parent_obj))) {
+            return;
+        } else {
+            assert(cq->vector < 32);
+            n->irq_status &= ~(1 << cq->vector);
+            nvme_irq_check(n);
+        }
+    }
+}
+
+static void nvme_req_clear(NvmeRequest *req)
+{
+    req->ns = NULL;
+    req->opaque = NULL;
+    req->aiocb = NULL;
+    memset(&req->cqe, 0x0, sizeof(req->cqe));
+    req->status = NVME_SUCCESS;
+}
+
+static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
+{
+    if (dma) {
+        pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
+        sg->flags = NVME_SG_DMA;
+    } else {
+        qemu_iovec_init(&sg->iov, 0);
+    }
+
+    sg->flags |= NVME_SG_ALLOC;
+}
+
+static inline void nvme_sg_unmap(NvmeSg *sg)
+{
+    if (!(sg->flags & NVME_SG_ALLOC)) {
+        return;
+    }
+
+    if (sg->flags & NVME_SG_DMA) {
+        qemu_sglist_destroy(&sg->qsg);
+    } else {
+        qemu_iovec_destroy(&sg->iov);
+    }
+
+    memset(sg, 0x0, sizeof(*sg));
+}
+
+/*
+ * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
+ * holds both data and metadata. This function splits the data and metadata
+ * into two separate QSG/IOVs.
+ */
+static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
+                          NvmeSg *mdata)
+{
+    NvmeSg *dst = data;
+    uint32_t trans_len, count = ns->lbasz;
+    uint64_t offset = 0;
+    bool dma = sg->flags & NVME_SG_DMA;
+    size_t sge_len;
+    size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
+    int sg_idx = 0;
+
+    assert(sg->flags & NVME_SG_ALLOC);
+
+    while (sg_len) {
+        sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
+
+        trans_len = MIN(sg_len, count);
+        trans_len = MIN(trans_len, sge_len - offset);
+
+        if (dst) {
+            if (dma) {
+                qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
+                                trans_len);
+            } else {
+                qemu_iovec_add(&dst->iov,
+                               sg->iov.iov[sg_idx].iov_base + offset,
+                               trans_len);
+            }
+        }
+
+        sg_len -= trans_len;
+        count -= trans_len;
+        offset += trans_len;
+
+        if (count == 0) {
+            dst = (dst == data) ? mdata : data;
+            count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
+        }
+
+        if (sge_len == offset) {
+            offset = 0;
+            sg_idx++;
+        }
+    }
+}
+
+static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
+                                  size_t len)
+{
+    if (!len) {
+        return NVME_SUCCESS;
+    }
+
+    trace_pci_nvme_map_addr_cmb(addr, len);
+
+    if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
+        return NVME_DATA_TRAS_ERROR;
+    }
+
+    qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
+
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
+                                  size_t len)
+{
+    if (!len) {
+        return NVME_SUCCESS;
+    }
+
+    if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
+        return NVME_DATA_TRAS_ERROR;
+    }
+
+    qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
+
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
+{
+    bool cmb = false, pmr = false;
+
+    if (!len) {
+        return NVME_SUCCESS;
+    }
+
+    trace_pci_nvme_map_addr(addr, len);
+
+    if (nvme_addr_is_cmb(n, addr)) {
+        cmb = true;
+    } else if (nvme_addr_is_pmr(n, addr)) {
+        pmr = true;
+    }
+
+    if (cmb || pmr) {
+        if (sg->flags & NVME_SG_DMA) {
+            return NVME_INVALID_USE_OF_CMB | NVME_DNR;
+        }
+
+        if (cmb) {
+            return nvme_map_addr_cmb(n, &sg->iov, addr, len);
+        } else {
+            return nvme_map_addr_pmr(n, &sg->iov, addr, len);
+        }
+    }
+
+    if (!(sg->flags & NVME_SG_DMA)) {
+        return NVME_INVALID_USE_OF_CMB | NVME_DNR;
+    }
+
+    qemu_sglist_add(&sg->qsg, addr, len);
+
+    return NVME_SUCCESS;
+}
+
+static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
+{
+    return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
+}
+
+static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
+                             uint64_t prp2, uint32_t len)
+{
+    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
+    trans_len = MIN(len, trans_len);
+    int num_prps = (len >> n->page_bits) + 1;
+    uint16_t status;
+    int ret;
+
+    trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
+
+    nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
+
+    status = nvme_map_addr(n, sg, prp1, trans_len);
+    if (status) {
+        goto unmap;
+    }
+
+    len -= trans_len;
+    if (len) {
+        if (len > n->page_size) {
+            uint64_t prp_list[n->max_prp_ents];
+            uint32_t nents, prp_trans;
+            int i = 0;
+
+            /*
+             * The first PRP list entry, pointed to by PRP2 may contain offset.
+             * Hence, we need to calculate the number of entries in based on
+             * that offset.
+             */
+            nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
+            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
+            ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
+            if (ret) {
+                trace_pci_nvme_err_addr_read(prp2);
+                status = NVME_DATA_TRAS_ERROR;
+                goto unmap;
+            }
+            while (len != 0) {
+                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
+
+                if (i == nents - 1 && len > n->page_size) {
+                    if (unlikely(prp_ent & (n->page_size - 1))) {
+                        trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
+                        status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
+                        goto unmap;
+                    }
+
+                    i = 0;
+                    nents = (len + n->page_size - 1) >> n->page_bits;
+                    nents = MIN(nents, n->max_prp_ents);
+                    prp_trans = nents * sizeof(uint64_t);
+                    ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
+                                         prp_trans);
+                    if (ret) {
+                        trace_pci_nvme_err_addr_read(prp_ent);
+                        status = NVME_DATA_TRAS_ERROR;
+                        goto unmap;
+                    }
+                    prp_ent = le64_to_cpu(prp_list[i]);
+                }
+
+                if (unlikely(prp_ent & (n->page_size - 1))) {
+                    trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
+                    status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
+                    goto unmap;
+                }
+
+                trans_len = MIN(len, n->page_size);
+                status = nvme_map_addr(n, sg, prp_ent, trans_len);
+                if (status) {
+                    goto unmap;
+                }
+
+                len -= trans_len;
+                i++;
+            }
+        } else {
+            if (unlikely(prp2 & (n->page_size - 1))) {
+                trace_pci_nvme_err_invalid_prp2_align(prp2);
+                status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
+                goto unmap;
+            }
+            status = nvme_map_addr(n, sg, prp2, len);
+            if (status) {
+                goto unmap;
+            }
+        }
+    }
+
+    return NVME_SUCCESS;
+
+unmap:
+    nvme_sg_unmap(sg);
+    return status;
+}
+
+/*
+ * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
+ * number of bytes mapped in len.
+ */
+static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
+                                  NvmeSglDescriptor *segment, uint64_t nsgld,
+                                  size_t *len, NvmeCmd *cmd)
+{
+    dma_addr_t addr, trans_len;
+    uint32_t dlen;
+    uint16_t status;
+
+    for (int i = 0; i < nsgld; i++) {
+        uint8_t type = NVME_SGL_TYPE(segment[i].type);
+
+        switch (type) {
+        case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
+            if (cmd->opcode == NVME_CMD_WRITE) {
+                continue;
+            }
+        case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
+            break;
+        case NVME_SGL_DESCR_TYPE_SEGMENT:
+        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
+            return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
+        default:
+            return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
+        }
+
+        dlen = le32_to_cpu(segment[i].len);
+
+        if (!dlen) {
+            continue;
+        }
+
+        if (*len == 0) {
+            /*
+             * All data has been mapped, but the SGL contains additional
+             * segments and/or descriptors. The controller might accept
+             * ignoring the rest of the SGL.
+             */
+            uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
+            if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
+                break;
+            }
+
+            trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
+            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
+        }
+
+        trans_len = MIN(*len, dlen);
+
+        if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
+            goto next;
+        }
+
+        addr = le64_to_cpu(segment[i].addr);
+
+        if (UINT64_MAX - addr < dlen) {
+            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
+        }
+
+        status = nvme_map_addr(n, sg, addr, trans_len);
+        if (status) {
+            return status;
+        }
+
+next:
+        *len -= trans_len;
+    }
+
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
+                             size_t len, NvmeCmd *cmd)
+{
+    /*
+     * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
+     * dynamically allocating a potentially huge SGL. The spec allows the SGL
+     * to be larger (as in number of bytes required to describe the SGL
+     * descriptors and segment chain) than the command transfer size, so it is
+     * not bounded by MDTS.
+     */
+    const int SEG_CHUNK_SIZE = 256;
+
+    NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
+    uint64_t nsgld;
+    uint32_t seg_len;
+    uint16_t status;
+    hwaddr addr;
+    int ret;
+
+    sgld = &sgl;
+    addr = le64_to_cpu(sgl.addr);
+
+    trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
+
+    nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
+
+    /*
+     * If the entire transfer can be described with a single data block it can
+     * be mapped directly.
+     */
+    if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
+        status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
+        if (status) {
+            goto unmap;
+        }
+
+        goto out;
+    }
+
+    for (;;) {
+        switch (NVME_SGL_TYPE(sgld->type)) {
+        case NVME_SGL_DESCR_TYPE_SEGMENT:
+        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
+            break;
+        default:
+            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
+        }
+
+        seg_len = le32_to_cpu(sgld->len);
+
+        /* check the length of the (Last) Segment descriptor */
+        if ((!seg_len || seg_len & 0xf) &&
+            (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
+            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
+        }
+
+        if (UINT64_MAX - addr < seg_len) {
+            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
+        }
+
+        nsgld = seg_len / sizeof(NvmeSglDescriptor);
+
+        while (nsgld > SEG_CHUNK_SIZE) {
+            if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
+                trace_pci_nvme_err_addr_read(addr);
+                status = NVME_DATA_TRAS_ERROR;
+                goto unmap;
+            }
+
+            status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
+                                       &len, cmd);
+            if (status) {
+                goto unmap;
+            }
+
+            nsgld -= SEG_CHUNK_SIZE;
+            addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
+        }
+
+        ret = nvme_addr_read(n, addr, segment, nsgld *
+                             sizeof(NvmeSglDescriptor));
+        if (ret) {
+            trace_pci_nvme_err_addr_read(addr);
+            status = NVME_DATA_TRAS_ERROR;
+            goto unmap;
+        }
+
+        last_sgld = &segment[nsgld - 1];
+
+        /*
+         * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
+         * then we are done.
+         */
+        switch (NVME_SGL_TYPE(last_sgld->type)) {
+        case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
+        case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
+            status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
+            if (status) {
+                goto unmap;
+            }
+
+            goto out;
+
+        default:
+            break;
+        }
+
+        /*
+         * If the last descriptor was not a Data Block or Bit Bucket, then the
+         * current segment must not be a Last Segment.
+         */
+        if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
+            status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
+            goto unmap;
+        }
+
+        sgld = last_sgld;
+        addr = le64_to_cpu(sgld->addr);
+
+        /*
+         * Do not map the last descriptor; it will be a Segment or Last Segment
+         * descriptor and is handled by the next iteration.
+         */
+        status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
+        if (status) {
+            goto unmap;
+        }
+    }
+
+out:
+    /* if there is any residual left in len, the SGL was too short */
+    if (len) {
+        status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
+        goto unmap;
+    }
+
+    return NVME_SUCCESS;
+
+unmap:
+    nvme_sg_unmap(sg);
+    return status;
+}
+
+uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
+                       NvmeCmd *cmd)
+{
+    uint64_t prp1, prp2;
+
+    switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
+    case NVME_PSDT_PRP:
+        prp1 = le64_to_cpu(cmd->dptr.prp1);
+        prp2 = le64_to_cpu(cmd->dptr.prp2);
+
+        return nvme_map_prp(n, sg, prp1, prp2, len);
+    case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
+    case NVME_PSDT_SGL_MPTR_SGL:
+        return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
+    default:
+        return NVME_INVALID_FIELD;
+    }
+}
+
+static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
+                              NvmeCmd *cmd)
+{
+    int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
+    hwaddr mptr = le64_to_cpu(cmd->mptr);
+    uint16_t status;
+
+    if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
+        NvmeSglDescriptor sgl;
+
+        if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
+            return NVME_DATA_TRAS_ERROR;
+        }
+
+        status = nvme_map_sgl(n, sg, sgl, len, cmd);
+        if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
+            status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
+        }
+
+        return status;
+    }
+
+    nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
+    status = nvme_map_addr(n, sg, mptr, len);
+    if (status) {
+        nvme_sg_unmap(sg);
+    }
+
+    return status;
+}
+
+static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
+{
+    NvmeNamespace *ns = req->ns;
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+    uint16_t ctrl = le16_to_cpu(rw->control);
+    size_t len = nvme_l2b(ns, nlb);
+    uint16_t status;
+
+    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
+        (ctrl & NVME_RW_PRINFO_PRACT && ns->lbaf.ms == 8)) {
+        goto out;
+    }
+
+    if (nvme_ns_ext(ns)) {
+        NvmeSg sg;
+
+        len += nvme_m2b(ns, nlb);
+
+        status = nvme_map_dptr(n, &sg, len, &req->cmd);
+        if (status) {
+            return status;
+        }
+
+        nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
+        nvme_sg_split(&sg, ns, &req->sg, NULL);
+        nvme_sg_unmap(&sg);
+
+        return NVME_SUCCESS;
+    }
+
+out:
+    return nvme_map_dptr(n, &req->sg, len, &req->cmd);
+}
+
+static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
+{
+    NvmeNamespace *ns = req->ns;
+    size_t len = nvme_m2b(ns, nlb);
+    uint16_t status;
+
+    if (nvme_ns_ext(ns)) {
+        NvmeSg sg;
+
+        len += nvme_l2b(ns, nlb);
+
+        status = nvme_map_dptr(n, &sg, len, &req->cmd);
+        if (status) {
+            return status;
+        }
+
+        nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
+        nvme_sg_split(&sg, ns, NULL, &req->sg);
+        nvme_sg_unmap(&sg);
+
+        return NVME_SUCCESS;
+    }
+
+    return nvme_map_mptr(n, &req->sg, len, &req->cmd);
+}
+
+static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
+                                    uint32_t len, uint32_t bytes,
+                                    int32_t skip_bytes, int64_t offset,
+                                    NvmeTxDirection dir)
+{
+    hwaddr addr;
+    uint32_t trans_len, count = bytes;
+    bool dma = sg->flags & NVME_SG_DMA;
+    int64_t sge_len;
+    int sg_idx = 0;
+    int ret;
+
+    assert(sg->flags & NVME_SG_ALLOC);
+
+    while (len) {
+        sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
+
+        if (sge_len - offset < 0) {
+            offset -= sge_len;
+            sg_idx++;
+            continue;
+        }
+
+        if (sge_len == offset) {
+            offset = 0;
+            sg_idx++;
+            continue;
+        }
+
+        trans_len = MIN(len, count);
+        trans_len = MIN(trans_len, sge_len - offset);
+
+        if (dma) {
+            addr = sg->qsg.sg[sg_idx].base + offset;
+        } else {
+            addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
+        }
+
+        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
+            ret = nvme_addr_read(n, addr, ptr, trans_len);
+        } else {
+            ret = nvme_addr_write(n, addr, ptr, trans_len);
+        }
+
+        if (ret) {
+            return NVME_DATA_TRAS_ERROR;
+        }
+
+        ptr += trans_len;
+        len -= trans_len;
+        count -= trans_len;
+        offset += trans_len;
+
+        if (count == 0) {
+            count = bytes;
+            offset += skip_bytes;
+        }
+    }
+
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len,
+                        NvmeTxDirection dir)
+{
+    assert(sg->flags & NVME_SG_ALLOC);
+
+    if (sg->flags & NVME_SG_DMA) {
+        uint64_t residual;
+
+        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
+            residual = dma_buf_write(ptr, len, &sg->qsg);
+        } else {
+            residual = dma_buf_read(ptr, len, &sg->qsg);
+        }
+
+        if (unlikely(residual)) {
+            trace_pci_nvme_err_invalid_dma();
+            return NVME_INVALID_FIELD | NVME_DNR;
+        }
+    } else {
+        size_t bytes;
+
+        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
+            bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
+        } else {
+            bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
+        }
+
+        if (unlikely(bytes != len)) {
+            trace_pci_nvme_err_invalid_dma();
+            return NVME_INVALID_FIELD | NVME_DNR;
+        }
+    }
+
+    return NVME_SUCCESS;
+}
+
+static inline uint16_t nvme_c2h(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
+                                NvmeRequest *req)
+{
+    uint16_t status;
+
+    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
+    if (status) {
+        return status;
+    }
+
+    return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
+}
+
+static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
+                                NvmeRequest *req)
+{
+    uint16_t status;
+
+    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
+    if (status) {
+        return status;
+    }
+
+    return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
+}
+
+uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
+                          NvmeTxDirection dir, NvmeRequest *req)
+{
+    NvmeNamespace *ns = req->ns;
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+    uint16_t ctrl = le16_to_cpu(rw->control);
+
+    if (nvme_ns_ext(ns) &&
+        !(ctrl & NVME_RW_PRINFO_PRACT && ns->lbaf.ms == 8)) {
+        return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
+                                   ns->lbaf.ms, 0, dir);
+    }
+
+    return nvme_tx(n, &req->sg, ptr, len, dir);
+}
+
+uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
+                           NvmeTxDirection dir, NvmeRequest *req)
+{
+    NvmeNamespace *ns = req->ns;
+    uint16_t status;
+
+    if (nvme_ns_ext(ns)) {
+        return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
+                                   ns->lbasz, ns->lbasz, dir);
+    }
+
+    nvme_sg_unmap(&req->sg);
+
+    status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
+    if (status) {
+        return status;
+    }
+
+    return nvme_tx(n, &req->sg, ptr, len, dir);
+}
+
+static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
+                                 BlockCompletionFunc *cb, NvmeRequest *req)
+{
+    assert(req->sg.flags & NVME_SG_ALLOC);
+
+    if (req->sg.flags & NVME_SG_DMA) {
+        req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
+                                  cb, req);
+    } else {
+        req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
+    }
+}
+
+static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
+                                  BlockCompletionFunc *cb, NvmeRequest *req)
+{
+    assert(req->sg.flags & NVME_SG_ALLOC);
+
+    if (req->sg.flags & NVME_SG_DMA) {
+        req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
+                                   cb, req);
+    } else {
+        req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
+    }
+}
+
+static void nvme_post_cqes(void *opaque)
+{
+    NvmeCQueue *cq = opaque;
+    NvmeCtrl *n = cq->ctrl;
+    NvmeRequest *req, *next;
+    int ret;
+
+    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
+        NvmeSQueue *sq;
+        hwaddr addr;
+
+        if (nvme_cq_full(cq)) {
+            break;
+        }
+
+        sq = req->sq;
+        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
+        req->cqe.sq_id = cpu_to_le16(sq->sqid);
+        req->cqe.sq_head = cpu_to_le16(sq->head);
+        addr = cq->dma_addr + cq->tail * n->cqe_size;
+        ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
+                            sizeof(req->cqe));
+        if (ret) {
+            trace_pci_nvme_err_addr_write(addr);
+            trace_pci_nvme_err_cfs();
+            n->bar.csts = NVME_CSTS_FAILED;
+            break;
+        }
+        QTAILQ_REMOVE(&cq->req_list, req, entry);
+        nvme_inc_cq_tail(cq);
+        nvme_sg_unmap(&req->sg);
+        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
+    }
+    if (cq->tail != cq->head) {
+        nvme_irq_assert(n, cq);
+    }
+}
+
+static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
+{
+    assert(cq->cqid == req->sq->cqid);
+    trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
+                                          req->status);
+
+    if (req->status) {
+        trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
+                                      req->status, req->cmd.opcode);
+    }
+
+    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
+    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
+    timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
+}
+
+static void nvme_process_aers(void *opaque)
+{
+    NvmeCtrl *n = opaque;
+    NvmeAsyncEvent *event, *next;
+
+    trace_pci_nvme_process_aers(n->aer_queued);
+
+    QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
+        NvmeRequest *req;
+        NvmeAerResult *result;
+
+        /* can't post cqe if there is nothing to complete */
+        if (!n->outstanding_aers) {
+            trace_pci_nvme_no_outstanding_aers();
+            break;
+        }
+
+        /* ignore if masked (cqe posted, but event not cleared) */
+        if (n->aer_mask & (1 << event->result.event_type)) {
+            trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
+            continue;
+        }
+
+        QTAILQ_REMOVE(&n->aer_queue, event, entry);
+        n->aer_queued--;
+
+        n->aer_mask |= 1 << event->result.event_type;
+        n->outstanding_aers--;
+
+        req = n->aer_reqs[n->outstanding_aers];
+
+        result = (NvmeAerResult *) &req->cqe.result;
+        result->event_type = event->result.event_type;
+        result->event_info = event->result.event_info;
+        result->log_page = event->result.log_page;
+        g_free(event);
+
+        trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
+                                    result->log_page);
+
+        nvme_enqueue_req_completion(&n->admin_cq, req);
+    }
+}
+
+static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
+                               uint8_t event_info, uint8_t log_page)
+{
+    NvmeAsyncEvent *event;
+
+    trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
+
+    if (n->aer_queued == n->params.aer_max_queued) {
+        trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
+        return;
+    }
+
+    event = g_new(NvmeAsyncEvent, 1);
+    event->result = (NvmeAerResult) {
+        .event_type = event_type,
+        .event_info = event_info,
+        .log_page   = log_page,
+    };
+
+    QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
+    n->aer_queued++;
+
+    nvme_process_aers(n);
+}
+
+static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
+{
+    uint8_t aer_info;
+
+    /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
+    if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
+        return;
+    }
+
+    switch (event) {
+    case NVME_SMART_SPARE:
+        aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
+        break;
+    case NVME_SMART_TEMPERATURE:
+        aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
+        break;
+    case NVME_SMART_RELIABILITY:
+    case NVME_SMART_MEDIA_READ_ONLY:
+    case NVME_SMART_FAILED_VOLATILE_MEDIA:
+    case NVME_SMART_PMR_UNRELIABLE:
+        aer_info = NVME_AER_INFO_SMART_RELIABILITY;
+        break;
+    default:
+        return;
+    }
+
+    nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
+}
+
+static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
+{
+    n->aer_mask &= ~(1 << event_type);
+    if (!QTAILQ_EMPTY(&n->aer_queue)) {
+        nvme_process_aers(n);
+    }
+}
+
+static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
+{
+    uint8_t mdts = n->params.mdts;
+
+    if (mdts && len > n->page_size << mdts) {
+        trace_pci_nvme_err_mdts(len);
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    return NVME_SUCCESS;
+}
+
+static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
+                                         uint32_t nlb)
+{
+    uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
+
+    if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
+        trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
+        return NVME_LBA_RANGE | NVME_DNR;
+    }
+
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
+                                 uint32_t nlb)
+{
+    BlockDriverState *bs = blk_bs(ns->blkconf.blk);
+
+    int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
+    int64_t offset = nvme_l2b(ns, slba);
+    bool zeroed;
+    int ret;
+
+    Error *local_err = NULL;
+
+    /*
+     * `pnum` holds the number of bytes after offset that shares the same
+     * allocation status as the byte at offset. If `pnum` is different from
+     * `bytes`, we should check the allocation status of the next range and
+     * continue this until all bytes have been checked.
+     */
+    do {
+        bytes -= pnum;
+
+        ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
+        if (ret < 0) {
+            error_setg_errno(&local_err, -ret, "unable to get block status");
+            error_report_err(local_err);
+
+            return NVME_INTERNAL_DEV_ERROR;
+        }
+
+        zeroed = !!(ret & BDRV_BLOCK_ZERO);
+
+        trace_pci_nvme_block_status(offset, bytes, pnum, ret, zeroed);
+
+        if (zeroed) {
+            return NVME_DULB;
+        }
+
+        offset += pnum;
+    } while (pnum != bytes);
+
+    return NVME_SUCCESS;
+}
+
+static void nvme_aio_err(NvmeRequest *req, int ret)
+{
+    uint16_t status = NVME_SUCCESS;
+    Error *local_err = NULL;
+
+    switch (req->cmd.opcode) {
+    case NVME_CMD_READ:
+        status = NVME_UNRECOVERED_READ;
+        break;
+    case NVME_CMD_FLUSH:
+    case NVME_CMD_WRITE:
+    case NVME_CMD_WRITE_ZEROES:
+    case NVME_CMD_ZONE_APPEND:
+        status = NVME_WRITE_FAULT;
+        break;
+    default:
+        status = NVME_INTERNAL_DEV_ERROR;
+        break;
+    }
+
+    trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
+
+    error_setg_errno(&local_err, -ret, "aio failed");
+    error_report_err(local_err);
+
+    /*
+     * Set the command status code to the first encountered error but allow a
+     * subsequent Internal Device Error to trump it.
+     */
+    if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
+        return;
+    }
+
+    req->status = status;
+}
+
+static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
+{
+    return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
+                                    slba / ns->zone_size;
+}
+
+static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
+{
+    uint32_t zone_idx = nvme_zone_idx(ns, slba);
+
+    assert(zone_idx < ns->num_zones);
+    return &ns->zone_array[zone_idx];
+}
+
+static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
+{
+    uint64_t zslba = zone->d.zslba;
+
+    switch (nvme_get_zone_state(zone)) {
+    case NVME_ZONE_STATE_EMPTY:
+    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
+    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
+    case NVME_ZONE_STATE_CLOSED:
+        return NVME_SUCCESS;
+    case NVME_ZONE_STATE_FULL:
+        trace_pci_nvme_err_zone_is_full(zslba);
+        return NVME_ZONE_FULL;
+    case NVME_ZONE_STATE_OFFLINE:
+        trace_pci_nvme_err_zone_is_offline(zslba);
+        return NVME_ZONE_OFFLINE;
+    case NVME_ZONE_STATE_READ_ONLY:
+        trace_pci_nvme_err_zone_is_read_only(zslba);
+        return NVME_ZONE_READ_ONLY;
+    default:
+        assert(false);
+    }
+
+    return NVME_INTERNAL_DEV_ERROR;
+}
+
+static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
+                                      uint64_t slba, uint32_t nlb)
+{
+    uint64_t zcap = nvme_zone_wr_boundary(zone);
+    uint16_t status;
+
+    status = nvme_check_zone_state_for_write(zone);
+    if (status) {
+        return status;
+    }
+
+    if (unlikely(slba != zone->w_ptr)) {
+        trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr);
+        return NVME_ZONE_INVALID_WRITE;
+    }
+
+    if (unlikely((slba + nlb) > zcap)) {
+        trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
+        return NVME_ZONE_BOUNDARY_ERROR;
+    }
+
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
+{
+    switch (nvme_get_zone_state(zone)) {
+    case NVME_ZONE_STATE_EMPTY:
+    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
+    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
+    case NVME_ZONE_STATE_FULL:
+    case NVME_ZONE_STATE_CLOSED:
+    case NVME_ZONE_STATE_READ_ONLY:
+        return NVME_SUCCESS;
+    case NVME_ZONE_STATE_OFFLINE:
+        trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
+        return NVME_ZONE_OFFLINE;
+    default:
+        assert(false);
+    }
+
+    return NVME_INTERNAL_DEV_ERROR;
+}
+
+static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
+                                     uint32_t nlb)
+{
+    NvmeZone *zone = nvme_get_zone_by_slba(ns, slba);
+    uint64_t bndry = nvme_zone_rd_boundary(ns, zone);
+    uint64_t end = slba + nlb;
+    uint16_t status;
+
+    status = nvme_check_zone_state_for_read(zone);
+    if (status) {
+        ;
+    } else if (unlikely(end > bndry)) {
+        if (!ns->params.cross_zone_read) {
+            status = NVME_ZONE_BOUNDARY_ERROR;
+        } else {
+            /*
+             * Read across zone boundary - check that all subsequent
+             * zones that are being read have an appropriate state.
+             */
+            do {
+                zone++;
+                status = nvme_check_zone_state_for_read(zone);
+                if (status) {
+                    break;
+                }
+            } while (end > nvme_zone_rd_boundary(ns, zone));
+        }
+    }
+
+    return status;
+}
+
+static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
+{
+    switch (nvme_get_zone_state(zone)) {
+    case NVME_ZONE_STATE_FULL:
+        return NVME_SUCCESS;
+
+    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
+    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
+        nvme_aor_dec_open(ns);
+        /* fallthrough */
+    case NVME_ZONE_STATE_CLOSED:
+        nvme_aor_dec_active(ns);
+        /* fallthrough */
+    case NVME_ZONE_STATE_EMPTY:
+        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
+        return NVME_SUCCESS;
+
+    default:
+        return NVME_ZONE_INVAL_TRANSITION;
+    }
+}
+
+static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
+{
+    switch (nvme_get_zone_state(zone)) {
+    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
+    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
+        nvme_aor_dec_open(ns);
+        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
+        /* fall through */
+    case NVME_ZONE_STATE_CLOSED:
+        return NVME_SUCCESS;
+
+    default:
+        return NVME_ZONE_INVAL_TRANSITION;
+    }
+}
+
+static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
+{
+    NvmeZone *zone;
+
+    if (ns->params.max_open_zones &&
+        ns->nr_open_zones == ns->params.max_open_zones) {
+        zone = QTAILQ_FIRST(&ns->imp_open_zones);
+        if (zone) {
+            /*
+             * Automatically close this implicitly open zone.
+             */
+            QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
+            nvme_zrm_close(ns, zone);
+        }
+    }
+}
+
+enum {
+    NVME_ZRM_AUTO = 1 << 0,
+};
+
+static uint16_t nvme_zrm_open_flags(NvmeNamespace *ns, NvmeZone *zone,
+                                    int flags)
+{
+    int act = 0;
+    uint16_t status;
+
+    switch (nvme_get_zone_state(zone)) {
+    case NVME_ZONE_STATE_EMPTY:
+        act = 1;
+
+        /* fallthrough */
+
+    case NVME_ZONE_STATE_CLOSED:
+        nvme_zrm_auto_transition_zone(ns);
+        status = nvme_aor_check(ns, act, 1);
+        if (status) {
+            return status;
+        }
+
+        if (act) {
+            nvme_aor_inc_active(ns);
+        }
+
+        nvme_aor_inc_open(ns);
+
+        if (flags & NVME_ZRM_AUTO) {
+            nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
+            return NVME_SUCCESS;
+        }
+
+        /* fallthrough */
+
+    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
+        if (flags & NVME_ZRM_AUTO) {
+            return NVME_SUCCESS;
+        }
+
+        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
+
+        /* fallthrough */
+
+    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
+        return NVME_SUCCESS;
+
+    default:
+        return NVME_ZONE_INVAL_TRANSITION;
+    }
+}
+
+static inline uint16_t nvme_zrm_auto(NvmeNamespace *ns, NvmeZone *zone)
+{
+    return nvme_zrm_open_flags(ns, zone, NVME_ZRM_AUTO);
+}
+
+static inline uint16_t nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone)
+{
+    return nvme_zrm_open_flags(ns, zone, 0);
+}
+
+static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
+                                 uint32_t nlb)
+{
+    zone->d.wp += nlb;
+
+    if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
+        nvme_zrm_finish(ns, zone);
+    }
+}
+
+static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
+{
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+    NvmeZone *zone;
+    uint64_t slba;
+    uint32_t nlb;
+
+    slba = le64_to_cpu(rw->slba);
+    nlb = le16_to_cpu(rw->nlb) + 1;
+    zone = nvme_get_zone_by_slba(ns, slba);
+
+    nvme_advance_zone_wp(ns, zone, nlb);
+}
+
+static inline bool nvme_is_write(NvmeRequest *req)
+{
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+
+    return rw->opcode == NVME_CMD_WRITE ||
+           rw->opcode == NVME_CMD_ZONE_APPEND ||
+           rw->opcode == NVME_CMD_WRITE_ZEROES;
+}
+
+static void nvme_misc_cb(void *opaque, int ret)
+{
+    NvmeRequest *req = opaque;
+    NvmeNamespace *ns = req->ns;
+
+    BlockBackend *blk = ns->blkconf.blk;
+    BlockAcctCookie *acct = &req->acct;
+    BlockAcctStats *stats = blk_get_stats(blk);
+
+    trace_pci_nvme_misc_cb(nvme_cid(req), blk_name(blk));
+
+    if (ret) {
+        block_acct_failed(stats, acct);
+        nvme_aio_err(req, ret);
+    } else {
+        block_acct_done(stats, acct);
+    }
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+void nvme_rw_complete_cb(void *opaque, int ret)
+{
+    NvmeRequest *req = opaque;
+    NvmeNamespace *ns = req->ns;
+    BlockBackend *blk = ns->blkconf.blk;
+    BlockAcctCookie *acct = &req->acct;
+    BlockAcctStats *stats = blk_get_stats(blk);
+
+    trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
+
+    if (ret) {
+        block_acct_failed(stats, acct);
+        nvme_aio_err(req, ret);
+    } else {
+        block_acct_done(stats, acct);
+    }
+
+    if (ns->params.zoned && nvme_is_write(req)) {
+        nvme_finalize_zoned_write(ns, req);
+    }
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+static void nvme_rw_cb(void *opaque, int ret)
+{
+    NvmeRequest *req = opaque;
+    NvmeNamespace *ns = req->ns;
+
+    BlockBackend *blk = ns->blkconf.blk;
+
+    trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
+
+    if (ret) {
+        goto out;
+    }
+
+    if (ns->lbaf.ms) {
+        NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+        uint64_t slba = le64_to_cpu(rw->slba);
+        uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
+        uint64_t offset = nvme_moff(ns, slba);
+
+        if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
+            size_t mlen = nvme_m2b(ns, nlb);
+
+            req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
+                                               BDRV_REQ_MAY_UNMAP,
+                                               nvme_rw_complete_cb, req);
+            return;
+        }
+
+        if (nvme_ns_ext(ns) || req->cmd.mptr) {
+            uint16_t status;
+
+            nvme_sg_unmap(&req->sg);
+            status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
+            if (status) {
+                ret = -EFAULT;
+                goto out;
+            }
+
+            if (req->cmd.opcode == NVME_CMD_READ) {
+                return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
+            }
+
+            return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
+        }
+    }
+
+out:
+    nvme_rw_complete_cb(req, ret);
+}
+
+struct nvme_aio_format_ctx {
+    NvmeRequest   *req;
+    NvmeNamespace *ns;
+
+    /* number of outstanding write zeroes for this namespace */
+    int *count;
+};
+
+static void nvme_aio_format_cb(void *opaque, int ret)
+{
+    struct nvme_aio_format_ctx *ctx = opaque;
+    NvmeRequest *req = ctx->req;
+    NvmeNamespace *ns = ctx->ns;
+    uintptr_t *num_formats = (uintptr_t *)&req->opaque;
+    int *count = ctx->count;
+
+    g_free(ctx);
+
+    if (ret) {
+        nvme_aio_err(req, ret);
+    }
+
+    if (--(*count)) {
+        return;
+    }
+
+    g_free(count);
+    ns->status = 0x0;
+
+    if (--(*num_formats)) {
+        return;
+    }
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+struct nvme_aio_flush_ctx {
+    NvmeRequest     *req;
+    NvmeNamespace   *ns;
+    BlockAcctCookie acct;
+};
+
+static void nvme_aio_flush_cb(void *opaque, int ret)
+{
+    struct nvme_aio_flush_ctx *ctx = opaque;
+    NvmeRequest *req = ctx->req;
+    uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
+
+    BlockBackend *blk = ctx->ns->blkconf.blk;
+    BlockAcctCookie *acct = &ctx->acct;
+    BlockAcctStats *stats = blk_get_stats(blk);
+
+    trace_pci_nvme_aio_flush_cb(nvme_cid(req), blk_name(blk));
+
+    if (!ret) {
+        block_acct_done(stats, acct);
+    } else {
+        block_acct_failed(stats, acct);
+        nvme_aio_err(req, ret);
+    }
+
+    (*num_flushes)--;
+    g_free(ctx);
+
+    if (*num_flushes) {
+        return;
+    }
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+static void nvme_verify_cb(void *opaque, int ret)
+{
+    NvmeBounceContext *ctx = opaque;
+    NvmeRequest *req = ctx->req;
+    NvmeNamespace *ns = req->ns;
+    BlockBackend *blk = ns->blkconf.blk;
+    BlockAcctCookie *acct = &req->acct;
+    BlockAcctStats *stats = blk_get_stats(blk);
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+    uint64_t slba = le64_to_cpu(rw->slba);
+    uint16_t ctrl = le16_to_cpu(rw->control);
+    uint16_t apptag = le16_to_cpu(rw->apptag);
+    uint16_t appmask = le16_to_cpu(rw->appmask);
+    uint32_t reftag = le32_to_cpu(rw->reftag);
+    uint16_t status;
+
+    trace_pci_nvme_verify_cb(nvme_cid(req), NVME_RW_PRINFO(ctrl), apptag,
+                             appmask, reftag);
+
+    if (ret) {
+        block_acct_failed(stats, acct);
+        nvme_aio_err(req, ret);
+        goto out;
+    }
+
+    block_acct_done(stats, acct);
+
+    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
+        status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
+                                       ctx->mdata.iov.size, slba);
+        if (status) {
+            req->status = status;
+            goto out;
+        }
+
+        req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
+                                     ctx->mdata.bounce, ctx->mdata.iov.size,
+                                     ctrl, slba, apptag, appmask, reftag);
+    }
+
+out:
+    qemu_iovec_destroy(&ctx->data.iov);
+    g_free(ctx->data.bounce);
+
+    qemu_iovec_destroy(&ctx->mdata.iov);
+    g_free(ctx->mdata.bounce);
+
+    g_free(ctx);
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+
+static void nvme_verify_mdata_in_cb(void *opaque, int ret)
+{
+    NvmeBounceContext *ctx = opaque;
+    NvmeRequest *req = ctx->req;
+    NvmeNamespace *ns = req->ns;
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+    uint64_t slba = le64_to_cpu(rw->slba);
+    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
+    size_t mlen = nvme_m2b(ns, nlb);
+    uint64_t offset = nvme_moff(ns, slba);
+    BlockBackend *blk = ns->blkconf.blk;
+
+    trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
+
+    if (ret) {
+        goto out;
+    }
+
+    ctx->mdata.bounce = g_malloc(mlen);
+
+    qemu_iovec_reset(&ctx->mdata.iov);
+    qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
+
+    req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
+                                nvme_verify_cb, ctx);
+    return;
+
+out:
+    nvme_verify_cb(ctx, ret);
+}
+
+static void nvme_aio_discard_cb(void *opaque, int ret)
+{
+    NvmeRequest *req = opaque;
+    uintptr_t *discards = (uintptr_t *)&req->opaque;
+
+    trace_pci_nvme_aio_discard_cb(nvme_cid(req));
+
+    if (ret) {
+        nvme_aio_err(req, ret);
+    }
+
+    (*discards)--;
+
+    if (*discards) {
+        return;
+    }
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+struct nvme_zone_reset_ctx {
+    NvmeRequest *req;
+    NvmeZone    *zone;
+};
+
+static void nvme_aio_zone_reset_complete_cb(void *opaque, int ret)
+{
+    struct nvme_zone_reset_ctx *ctx = opaque;
+    NvmeRequest *req = ctx->req;
+    NvmeNamespace *ns = req->ns;
+    NvmeZone *zone = ctx->zone;
+    uintptr_t *resets = (uintptr_t *)&req->opaque;
+
+    if (ret) {
+        nvme_aio_err(req, ret);
+        goto out;
+    }
+
+    switch (nvme_get_zone_state(zone)) {
+    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
+    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
+        nvme_aor_dec_open(ns);
+        /* fall through */
+    case NVME_ZONE_STATE_CLOSED:
+        nvme_aor_dec_active(ns);
+        /* fall through */
+    case NVME_ZONE_STATE_FULL:
+        zone->w_ptr = zone->d.zslba;
+        zone->d.wp = zone->w_ptr;
+        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
+        /* fall through */
+    default:
+        break;
+    }
+
+out:
+    g_free(ctx);
+
+    (*resets)--;
+
+    if (*resets) {
+        return;
+    }
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+static void nvme_aio_zone_reset_cb(void *opaque, int ret)
+{
+    struct nvme_zone_reset_ctx *ctx = opaque;
+    NvmeRequest *req = ctx->req;
+    NvmeNamespace *ns = req->ns;
+    NvmeZone *zone = ctx->zone;
+
+    trace_pci_nvme_aio_zone_reset_cb(nvme_cid(req), zone->d.zslba);
+
+    if (ret) {
+        goto out;
+    }
+
+    if (ns->lbaf.ms) {
+        int64_t offset = nvme_moff(ns, zone->d.zslba);
+
+        blk_aio_pwrite_zeroes(ns->blkconf.blk, offset,
+                              nvme_m2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
+                              nvme_aio_zone_reset_complete_cb, ctx);
+        return;
+    }
+
+out:
+    nvme_aio_zone_reset_complete_cb(opaque, ret);
+}
+
+struct nvme_copy_ctx {
+    int copies;
+    uint8_t *bounce;
+    uint8_t *mbounce;
+    uint32_t nlb;
+    NvmeCopySourceRange *ranges;
+};
+
+struct nvme_copy_in_ctx {
+    NvmeRequest *req;
+    QEMUIOVector iov;
+    NvmeCopySourceRange *range;
+};
+
+static void nvme_copy_complete_cb(void *opaque, int ret)
+{
+    NvmeRequest *req = opaque;
+    NvmeNamespace *ns = req->ns;
+    struct nvme_copy_ctx *ctx = req->opaque;
+
+    if (ret) {
+        block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
+        nvme_aio_err(req, ret);
+        goto out;
+    }
+
+    block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
+
+out:
+    if (ns->params.zoned) {
+        NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
+        uint64_t sdlba = le64_to_cpu(copy->sdlba);
+        NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
+
+        nvme_advance_zone_wp(ns, zone, ctx->nlb);
+    }
+
+    g_free(ctx->bounce);
+    g_free(ctx->mbounce);
+    g_free(ctx);
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+static void nvme_copy_cb(void *opaque, int ret)
+{
+    NvmeRequest *req = opaque;
+    NvmeNamespace *ns = req->ns;
+    struct nvme_copy_ctx *ctx = req->opaque;
+
+    trace_pci_nvme_copy_cb(nvme_cid(req));
+
+    if (ret) {
+        goto out;
+    }
+
+    if (ns->lbaf.ms) {
+        NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
+        uint64_t sdlba = le64_to_cpu(copy->sdlba);
+        int64_t offset = nvme_moff(ns, sdlba);
+
+        qemu_iovec_reset(&req->sg.iov);
+        qemu_iovec_add(&req->sg.iov, ctx->mbounce, nvme_m2b(ns, ctx->nlb));
+
+        req->aiocb = blk_aio_pwritev(ns->blkconf.blk, offset, &req->sg.iov, 0,
+                                     nvme_copy_complete_cb, req);
+        return;
+    }
+
+out:
+    nvme_copy_complete_cb(opaque, ret);
+}
+
+static void nvme_copy_in_complete(NvmeRequest *req)
+{
+    NvmeNamespace *ns = req->ns;
+    NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
+    struct nvme_copy_ctx *ctx = req->opaque;
+    uint64_t sdlba = le64_to_cpu(copy->sdlba);
+    uint16_t status;
+
+    trace_pci_nvme_copy_in_complete(nvme_cid(req));
+
+    block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
+
+    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
+        uint16_t prinfor = (copy->control[0] >> 4) & 0xf;
+        uint16_t prinfow = (copy->control[2] >> 2) & 0xf;
+        uint16_t nr = copy->nr + 1;
+        NvmeCopySourceRange *range;
+        uint64_t slba;
+        uint32_t nlb;
+        uint16_t apptag, appmask;
+        uint32_t reftag;
+        uint8_t *buf = ctx->bounce, *mbuf = ctx->mbounce;
+        size_t len, mlen;
+        int i;
+
+        /*
+         * The dif helpers expects prinfo to be similar to the control field of
+         * the NvmeRwCmd, so shift by 10 to fake it.
+         */
+        prinfor = prinfor << 10;
+        prinfow = prinfow << 10;
+
+        for (i = 0; i < nr; i++) {
+            range = &ctx->ranges[i];
+            slba = le64_to_cpu(range->slba);
+            nlb = le16_to_cpu(range->nlb) + 1;
+            len = nvme_l2b(ns, nlb);
+            mlen = nvme_m2b(ns, nlb);
+            apptag = le16_to_cpu(range->apptag);
+            appmask = le16_to_cpu(range->appmask);
+            reftag = le32_to_cpu(range->reftag);
+
+            status = nvme_dif_check(ns, buf, len, mbuf, mlen, prinfor, slba,
+                                    apptag, appmask, reftag);
+            if (status) {
+                goto invalid;
+            }
+
+            buf += len;
+            mbuf += mlen;
+        }
+
+        apptag = le16_to_cpu(copy->apptag);
+        appmask = le16_to_cpu(copy->appmask);
+        reftag = le32_to_cpu(copy->reftag);
+
+        if (prinfow & NVME_RW_PRINFO_PRACT) {
+            size_t len = nvme_l2b(ns, ctx->nlb);
+            size_t mlen = nvme_m2b(ns, ctx->nlb);
+
+            status = nvme_check_prinfo(ns, prinfow, sdlba, reftag);
+            if (status) {
+                goto invalid;
+            }
+
+            nvme_dif_pract_generate_dif(ns, ctx->bounce, len, ctx->mbounce,
+                                        mlen, apptag, reftag);
+        } else {
+            status = nvme_dif_check(ns, ctx->bounce, len, ctx->mbounce, mlen,
+                                    prinfow, sdlba, apptag, appmask, reftag);
+            if (status) {
+                goto invalid;
+            }
+        }
+    }
+
+    status = nvme_check_bounds(ns, sdlba, ctx->nlb);
+    if (status) {
+        goto invalid;
+    }
+
+    if (ns->params.zoned) {
+        NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
+
+        status = nvme_check_zone_write(ns, zone, sdlba, ctx->nlb);
+        if (status) {
+            goto invalid;
+        }
+
+        status = nvme_zrm_auto(ns, zone);
+        if (status) {
+            goto invalid;
+        }
+
+        zone->w_ptr += ctx->nlb;
+    }
+
+    qemu_iovec_init(&req->sg.iov, 1);
+    qemu_iovec_add(&req->sg.iov, ctx->bounce, nvme_l2b(ns, ctx->nlb));
+
+    block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
+                     BLOCK_ACCT_WRITE);
+
+    req->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, sdlba),
+                                 &req->sg.iov, 0, nvme_copy_cb, req);
+
+    return;
+
+invalid:
+    req->status = status;
+
+    g_free(ctx->bounce);
+    g_free(ctx);
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+static void nvme_aio_copy_in_cb(void *opaque, int ret)
+{
+    struct nvme_copy_in_ctx *in_ctx = opaque;
+    NvmeRequest *req = in_ctx->req;
+    NvmeNamespace *ns = req->ns;
+    struct nvme_copy_ctx *ctx = req->opaque;
+
+    qemu_iovec_destroy(&in_ctx->iov);
+    g_free(in_ctx);
+
+    trace_pci_nvme_aio_copy_in_cb(nvme_cid(req));
+
+    if (ret) {
+        nvme_aio_err(req, ret);
+    }
+
+    ctx->copies--;
+
+    if (ctx->copies) {
+        return;
+    }
+
+    if (req->status) {
+        block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
+
+        g_free(ctx->bounce);
+        g_free(ctx->mbounce);
+        g_free(ctx);
+
+        nvme_enqueue_req_completion(nvme_cq(req), req);
+
+        return;
+    }
+
+    nvme_copy_in_complete(req);
+}
+
+struct nvme_compare_ctx {
+    struct {
+        QEMUIOVector iov;
+        uint8_t *bounce;
+    } data;
+
+    struct {
+        QEMUIOVector iov;
+        uint8_t *bounce;
+    } mdata;
+};
+
+static void nvme_compare_mdata_cb(void *opaque, int ret)
+{
+    NvmeRequest *req = opaque;
+    NvmeNamespace *ns = req->ns;
+    NvmeCtrl *n = nvme_ctrl(req);
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+    uint16_t ctrl = le16_to_cpu(rw->control);
+    uint16_t apptag = le16_to_cpu(rw->apptag);
+    uint16_t appmask = le16_to_cpu(rw->appmask);
+    uint32_t reftag = le32_to_cpu(rw->reftag);
+    struct nvme_compare_ctx *ctx = req->opaque;
+    g_autofree uint8_t *buf = NULL;
+    BlockBackend *blk = ns->blkconf.blk;
+    BlockAcctCookie *acct = &req->acct;
+    BlockAcctStats *stats = blk_get_stats(blk);
+    uint16_t status = NVME_SUCCESS;
+
+    trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
+
+    if (ret) {
+        block_acct_failed(stats, acct);
+        nvme_aio_err(req, ret);
+        goto out;
+    }
+
+    buf = g_malloc(ctx->mdata.iov.size);
+
+    status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
+                               NVME_TX_DIRECTION_TO_DEVICE, req);
+    if (status) {
+        req->status = status;
+        goto out;
+    }
+
+    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
+        uint64_t slba = le64_to_cpu(rw->slba);
+        uint8_t *bufp;
+        uint8_t *mbufp = ctx->mdata.bounce;
+        uint8_t *end = mbufp + ctx->mdata.iov.size;
+        int16_t pil = 0;
+
+        status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
+                                ctx->mdata.bounce, ctx->mdata.iov.size, ctrl,
+                                slba, apptag, appmask, reftag);
+        if (status) {
+            req->status = status;
+            goto out;
+        }
+
+        /*
+         * When formatted with protection information, do not compare the DIF
+         * tuple.
+         */
+        if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
+            pil = ns->lbaf.ms - sizeof(NvmeDifTuple);
+        }
+
+        for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
+            if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
+                req->status = NVME_CMP_FAILURE;
+                goto out;
+            }
+        }
+
+        goto out;
+    }
+
+    if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
+        req->status = NVME_CMP_FAILURE;
+        goto out;
+    }
+
+    block_acct_done(stats, acct);
+
+out:
+    qemu_iovec_destroy(&ctx->data.iov);
+    g_free(ctx->data.bounce);
+
+    qemu_iovec_destroy(&ctx->mdata.iov);
+    g_free(ctx->mdata.bounce);
+
+    g_free(ctx);
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+static void nvme_compare_data_cb(void *opaque, int ret)
+{
+    NvmeRequest *req = opaque;
+    NvmeCtrl *n = nvme_ctrl(req);
+    NvmeNamespace *ns = req->ns;
+    BlockBackend *blk = ns->blkconf.blk;
+    BlockAcctCookie *acct = &req->acct;
+    BlockAcctStats *stats = blk_get_stats(blk);
+
+    struct nvme_compare_ctx *ctx = req->opaque;
+    g_autofree uint8_t *buf = NULL;
+    uint16_t status;
+
+    trace_pci_nvme_compare_data_cb(nvme_cid(req));
+
+    if (ret) {
+        block_acct_failed(stats, acct);
+        nvme_aio_err(req, ret);
+        goto out;
+    }
+
+    buf = g_malloc(ctx->data.iov.size);
+
+    status = nvme_bounce_data(n, buf, ctx->data.iov.size,
+                              NVME_TX_DIRECTION_TO_DEVICE, req);
+    if (status) {
+        req->status = status;
+        goto out;
+    }
+
+    if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
+        req->status = NVME_CMP_FAILURE;
+        goto out;
+    }
+
+    if (ns->lbaf.ms) {
+        NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+        uint64_t slba = le64_to_cpu(rw->slba);
+        uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
+        size_t mlen = nvme_m2b(ns, nlb);
+        uint64_t offset = nvme_moff(ns, slba);
+
+        ctx->mdata.bounce = g_malloc(mlen);
+
+        qemu_iovec_init(&ctx->mdata.iov, 1);
+        qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
+
+        req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
+                                    nvme_compare_mdata_cb, req);
+        return;
+    }
+
+    block_acct_done(stats, acct);
+
+out:
+    qemu_iovec_destroy(&ctx->data.iov);
+    g_free(ctx->data.bounce);
+    g_free(ctx);
+
+    nvme_enqueue_req_completion(nvme_cq(req), req);
+}
+
+static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeNamespace *ns = req->ns;
+    NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
+
+    uint32_t attr = le32_to_cpu(dsm->attributes);
+    uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
+
+    uint16_t status = NVME_SUCCESS;
+
+    trace_pci_nvme_dsm(nvme_cid(req), nvme_nsid(ns), nr, attr);
+
+    if (attr & NVME_DSMGMT_AD) {
+        int64_t offset;
+        size_t len;
+        NvmeDsmRange range[nr];
+        uintptr_t *discards = (uintptr_t *)&req->opaque;
+
+        status = nvme_h2c(n, (uint8_t *)range, sizeof(range), req);
+        if (status) {
+            return status;
+        }
+
+        /*
+         * AIO callbacks may be called immediately, so initialize discards to 1
+         * to make sure the the callback does not complete the request before
+         * all discards have been issued.
+         */
+        *discards = 1;
+
+        for (int i = 0; i < nr; i++) {
+            uint64_t slba = le64_to_cpu(range[i].slba);
+            uint32_t nlb = le32_to_cpu(range[i].nlb);
+
+            if (nvme_check_bounds(ns, slba, nlb)) {
+                continue;
+            }
+
+            trace_pci_nvme_dsm_deallocate(nvme_cid(req), nvme_nsid(ns), slba,
+                                          nlb);
+
+            if (nlb > n->dmrsl) {
+                trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
+            }
+
+            offset = nvme_l2b(ns, slba);
+            len = nvme_l2b(ns, nlb);
+
+            while (len) {
+                size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
+
+                (*discards)++;
+
+                blk_aio_pdiscard(ns->blkconf.blk, offset, bytes,
+                                 nvme_aio_discard_cb, req);
+
+                offset += bytes;
+                len -= bytes;
+            }
+        }
+
+        /* account for the 1-initialization */
+        (*discards)--;
+
+        if (*discards) {
+            status = NVME_NO_COMPLETE;
+        } else {
+            status = req->status;
+        }
+    }
+
+    return status;
+}
+
+static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+    NvmeNamespace *ns = req->ns;
+    BlockBackend *blk = ns->blkconf.blk;
+    uint64_t slba = le64_to_cpu(rw->slba);
+    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
+    size_t len = nvme_l2b(ns, nlb);
+    int64_t offset = nvme_l2b(ns, slba);
+    uint16_t ctrl = le16_to_cpu(rw->control);
+    uint32_t reftag = le32_to_cpu(rw->reftag);
+    NvmeBounceContext *ctx = NULL;
+    uint16_t status;
+
+    trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
+
+    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
+        status = nvme_check_prinfo(ns, ctrl, slba, reftag);
+        if (status) {
+            return status;
+        }
+
+        if (ctrl & NVME_RW_PRINFO_PRACT) {
+            return NVME_INVALID_PROT_INFO | NVME_DNR;
+        }
+    }
+
+    if (len > n->page_size << n->params.vsl) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    status = nvme_check_bounds(ns, slba, nlb);
+    if (status) {
+        return status;
+    }
+
+    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
+        status = nvme_check_dulbe(ns, slba, nlb);
+        if (status) {
+            return status;
+        }
+    }
+
+    ctx = g_new0(NvmeBounceContext, 1);
+    ctx->req = req;
+
+    ctx->data.bounce = g_malloc(len);
+
+    qemu_iovec_init(&ctx->data.iov, 1);
+    qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
+
+    block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
+                     BLOCK_ACCT_READ);
+
+    req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
+                                nvme_verify_mdata_in_cb, ctx);
+    return NVME_NO_COMPLETE;
+}
+
+static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeNamespace *ns = req->ns;
+    NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
+
+    uint16_t nr = copy->nr + 1;
+    uint8_t format = copy->control[0] & 0xf;
+
+    /*
+     * Shift the PRINFOR/PRINFOW values by 10 to allow reusing the
+     * NVME_RW_PRINFO constants.
+     */
+    uint16_t prinfor = ((copy->control[0] >> 4) & 0xf) << 10;
+    uint16_t prinfow = ((copy->control[2] >> 2) & 0xf) << 10;
+
+    uint32_t nlb = 0;
+    uint8_t *bounce = NULL, *bouncep = NULL;
+    uint8_t *mbounce = NULL, *mbouncep = NULL;
+    struct nvme_copy_ctx *ctx;
+    uint16_t status;
+    int i;
+
+    trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
+
+    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
+        ((prinfor & NVME_RW_PRINFO_PRACT) != (prinfow & NVME_RW_PRINFO_PRACT))) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    if (!(n->id_ctrl.ocfs & (1 << format))) {
+        trace_pci_nvme_err_copy_invalid_format(format);
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    if (nr > ns->id_ns.msrc + 1) {
+        return NVME_CMD_SIZE_LIMIT | NVME_DNR;
+    }
+
+    ctx = g_new(struct nvme_copy_ctx, 1);
+    ctx->ranges = g_new(NvmeCopySourceRange, nr);
+
+    status = nvme_h2c(n, (uint8_t *)ctx->ranges,
+                      nr * sizeof(NvmeCopySourceRange), req);
+    if (status) {
+        goto out;
+    }
+
+    for (i = 0; i < nr; i++) {
+        uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
+        uint32_t _nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
+
+        if (_nlb > le16_to_cpu(ns->id_ns.mssrl)) {
+            status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
+            goto out;
+        }
+
+        status = nvme_check_bounds(ns, slba, _nlb);
+        if (status) {
+            goto out;
+        }
+
+        if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
+            status = nvme_check_dulbe(ns, slba, _nlb);
+            if (status) {
+                goto out;
+            }
+        }
+
+        if (ns->params.zoned) {
+            status = nvme_check_zone_read(ns, slba, _nlb);
+            if (status) {
+                goto out;
+            }
+        }
+
+        nlb += _nlb;
+    }
+
+    if (nlb > le32_to_cpu(ns->id_ns.mcl)) {
+        status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
+        goto out;
+    }
+
+    bounce = bouncep = g_malloc(nvme_l2b(ns, nlb));
+    if (ns->lbaf.ms) {
+        mbounce = mbouncep = g_malloc(nvme_m2b(ns, nlb));
+    }
+
+    block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
+                     BLOCK_ACCT_READ);
+
+    ctx->bounce = bounce;
+    ctx->mbounce = mbounce;
+    ctx->nlb = nlb;
+    ctx->copies = 1;
+
+    req->opaque = ctx;
+
+    for (i = 0; i < nr; i++) {
+        uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
+        uint32_t nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
+
+        size_t len = nvme_l2b(ns, nlb);
+        int64_t offset = nvme_l2b(ns, slba);
+
+        trace_pci_nvme_copy_source_range(slba, nlb);
+
+        struct nvme_copy_in_ctx *in_ctx = g_new(struct nvme_copy_in_ctx, 1);
+        in_ctx->req = req;
+
+        qemu_iovec_init(&in_ctx->iov, 1);
+        qemu_iovec_add(&in_ctx->iov, bouncep, len);
+
+        ctx->copies++;
+
+        blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
+                       nvme_aio_copy_in_cb, in_ctx);
+
+        bouncep += len;
+
+        if (ns->lbaf.ms) {
+            len = nvme_m2b(ns, nlb);
+            offset = nvme_moff(ns, slba);
+
+            in_ctx = g_new(struct nvme_copy_in_ctx, 1);
+            in_ctx->req = req;
+
+            qemu_iovec_init(&in_ctx->iov, 1);
+            qemu_iovec_add(&in_ctx->iov, mbouncep, len);
+
+            ctx->copies++;
+
+            blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
+                           nvme_aio_copy_in_cb, in_ctx);
+
+            mbouncep += len;
+        }
+    }
+
+    /* account for the 1-initialization */
+    ctx->copies--;
+
+    if (!ctx->copies) {
+        nvme_copy_in_complete(req);
+    }
+
+    return NVME_NO_COMPLETE;
+
+out:
+    g_free(ctx->ranges);
+    g_free(ctx);
+
+    return status;
+}
+
+static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+    NvmeNamespace *ns = req->ns;
+    BlockBackend *blk = ns->blkconf.blk;
+    uint64_t slba = le64_to_cpu(rw->slba);
+    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
+    uint16_t ctrl = le16_to_cpu(rw->control);
+    size_t data_len = nvme_l2b(ns, nlb);
+    size_t len = data_len;
+    int64_t offset = nvme_l2b(ns, slba);
+    struct nvme_compare_ctx *ctx = NULL;
+    uint16_t status;
+
+    trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
+
+    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (ctrl & NVME_RW_PRINFO_PRACT)) {
+        return NVME_INVALID_PROT_INFO | NVME_DNR;
+    }
+
+    if (nvme_ns_ext(ns)) {
+        len += nvme_m2b(ns, nlb);
+    }
+
+    status = nvme_check_mdts(n, len);
+    if (status) {
+        return status;
+    }
+
+    status = nvme_check_bounds(ns, slba, nlb);
+    if (status) {
+        return status;
+    }
+
+    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
+        status = nvme_check_dulbe(ns, slba, nlb);
+        if (status) {
+            return status;
+        }
+    }
+
+    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
+    if (status) {
+        return status;
+    }
+
+    ctx = g_new(struct nvme_compare_ctx, 1);
+    ctx->data.bounce = g_malloc(data_len);
+
+    req->opaque = ctx;
+
+    qemu_iovec_init(&ctx->data.iov, 1);
+    qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
+
+    block_acct_start(blk_get_stats(blk), &req->acct, data_len,
+                     BLOCK_ACCT_READ);
+    req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
+                                nvme_compare_data_cb, req);
+
+    return NVME_NO_COMPLETE;
+}
+
+static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
+{
+    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
+    uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
+    uint16_t status;
+    struct nvme_aio_flush_ctx *ctx;
+    NvmeNamespace *ns;
+
+    trace_pci_nvme_flush(nvme_cid(req), nsid);
+
+    if (nsid != NVME_NSID_BROADCAST) {
+        req->ns = nvme_ns(n, nsid);
+        if (unlikely(!req->ns)) {
+            return NVME_INVALID_FIELD | NVME_DNR;
+        }
+
+        block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
+                         BLOCK_ACCT_FLUSH);
+        req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_misc_cb, req);
+        return NVME_NO_COMPLETE;
+    }
+
+    /* 1-initialize; see comment in nvme_dsm */
+    *num_flushes = 1;
+
+    for (int i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+        ns = nvme_ns(n, i);
+        if (!ns) {
+            continue;
+        }
+
+        ctx = g_new(struct nvme_aio_flush_ctx, 1);
+        ctx->req = req;
+        ctx->ns = ns;
+
+        (*num_flushes)++;
+
+        block_acct_start(blk_get_stats(ns->blkconf.blk), &ctx->acct, 0,
+                         BLOCK_ACCT_FLUSH);
+        blk_aio_flush(ns->blkconf.blk, nvme_aio_flush_cb, ctx);
+    }
+
+    /* account for the 1-initialization */
+    (*num_flushes)--;
+
+    if (*num_flushes) {
+        status = NVME_NO_COMPLETE;
+    } else {
+        status = req->status;
+    }
+
+    return status;
+}
+
+static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+    NvmeNamespace *ns = req->ns;
+    uint64_t slba = le64_to_cpu(rw->slba);
+    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
+    uint16_t ctrl = le16_to_cpu(rw->control);
+    uint64_t data_size = nvme_l2b(ns, nlb);
+    uint64_t mapped_size = data_size;
+    uint64_t data_offset;
+    BlockBackend *blk = ns->blkconf.blk;
+    uint16_t status;
+
+    if (nvme_ns_ext(ns)) {
+        mapped_size += nvme_m2b(ns, nlb);
+
+        if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
+            bool pract = ctrl & NVME_RW_PRINFO_PRACT;
+
+            if (pract && ns->lbaf.ms == 8) {
+                mapped_size = data_size;
+            }
+        }
+    }
+
+    trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
+
+    status = nvme_check_mdts(n, mapped_size);
+    if (status) {
+        goto invalid;
+    }
+
+    status = nvme_check_bounds(ns, slba, nlb);
+    if (status) {
+        goto invalid;
+    }
+
+    if (ns->params.zoned) {
+        status = nvme_check_zone_read(ns, slba, nlb);
+        if (status) {
+            trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
+            goto invalid;
+        }
+    }
+
+    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
+        status = nvme_check_dulbe(ns, slba, nlb);
+        if (status) {
+            goto invalid;
+        }
+    }
+
+    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
+        return nvme_dif_rw(n, req);
+    }
+
+    status = nvme_map_data(n, nlb, req);
+    if (status) {
+        goto invalid;
+    }
+
+    data_offset = nvme_l2b(ns, slba);
+
+    block_acct_start(blk_get_stats(blk), &req->acct, data_size,
+                     BLOCK_ACCT_READ);
+    nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
+    return NVME_NO_COMPLETE;
+
+invalid:
+    block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
+    return status | NVME_DNR;
+}
+
+static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
+                              bool wrz)
+{
+    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
+    NvmeNamespace *ns = req->ns;
+    uint64_t slba = le64_to_cpu(rw->slba);
+    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
+    uint16_t ctrl = le16_to_cpu(rw->control);
+    uint64_t data_size = nvme_l2b(ns, nlb);
+    uint64_t mapped_size = data_size;
+    uint64_t data_offset;
+    NvmeZone *zone;
+    NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
+    BlockBackend *blk = ns->blkconf.blk;
+    uint16_t status;
+
+    if (nvme_ns_ext(ns)) {
+        mapped_size += nvme_m2b(ns, nlb);
+
+        if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
+            bool pract = ctrl & NVME_RW_PRINFO_PRACT;
+
+            if (pract && ns->lbaf.ms == 8) {
+                mapped_size -= nvme_m2b(ns, nlb);
+            }
+        }
+    }
+
+    trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
+                         nvme_nsid(ns), nlb, mapped_size, slba);
+
+    if (!wrz) {
+        status = nvme_check_mdts(n, mapped_size);
+        if (status) {
+            goto invalid;
+        }
+    }
+
+    status = nvme_check_bounds(ns, slba, nlb);
+    if (status) {
+        goto invalid;
+    }
+
+    if (ns->params.zoned) {
+        zone = nvme_get_zone_by_slba(ns, slba);
+
+        if (append) {
+            bool piremap = !!(ctrl & NVME_RW_PIREMAP);
+
+            if (unlikely(slba != zone->d.zslba)) {
+                trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
+                status = NVME_INVALID_FIELD;
+                goto invalid;
+            }
+
+            if (n->params.zasl &&
+                data_size > (uint64_t)n->page_size << n->params.zasl) {
+                trace_pci_nvme_err_zasl(data_size);
+                return NVME_INVALID_FIELD | NVME_DNR;
+            }
+
+            slba = zone->w_ptr;
+            rw->slba = cpu_to_le64(slba);
+            res->slba = cpu_to_le64(slba);
+
+            switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
+            case NVME_ID_NS_DPS_TYPE_1:
+                if (!piremap) {
+                    return NVME_INVALID_PROT_INFO | NVME_DNR;
+                }
+
+                /* fallthrough */
+
+            case NVME_ID_NS_DPS_TYPE_2:
+                if (piremap) {
+                    uint32_t reftag = le32_to_cpu(rw->reftag);
+                    rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
+                }
+
+                break;
+
+            case NVME_ID_NS_DPS_TYPE_3:
+                if (piremap) {
+                    return NVME_INVALID_PROT_INFO | NVME_DNR;
+                }
+
+                break;
+            }
+        }
+
+        status = nvme_check_zone_write(ns, zone, slba, nlb);
+        if (status) {
+            goto invalid;
+        }
+
+        status = nvme_zrm_auto(ns, zone);
+        if (status) {
+            goto invalid;
+        }
+
+        zone->w_ptr += nlb;
+    }
+
+    data_offset = nvme_l2b(ns, slba);
+
+    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
+        return nvme_dif_rw(n, req);
+    }
+
+    if (!wrz) {
+        status = nvme_map_data(n, nlb, req);
+        if (status) {
+            goto invalid;
+        }
+
+        block_acct_start(blk_get_stats(blk), &req->acct, data_size,
+                         BLOCK_ACCT_WRITE);
+        nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
+    } else {
+        req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
+                                           BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
+                                           req);
+    }
+
+    return NVME_NO_COMPLETE;
+
+invalid:
+    block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
+    return status | NVME_DNR;
+}
+
+static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
+{
+    return nvme_do_write(n, req, false, false);
+}
+
+static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
+{
+    return nvme_do_write(n, req, false, true);
+}
+
+static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
+{
+    return nvme_do_write(n, req, true, false);
+}
+
+static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
+                                            uint64_t *slba, uint32_t *zone_idx)
+{
+    uint32_t dw10 = le32_to_cpu(c->cdw10);
+    uint32_t dw11 = le32_to_cpu(c->cdw11);
+
+    if (!ns->params.zoned) {
+        trace_pci_nvme_err_invalid_opc(c->opcode);
+        return NVME_INVALID_OPCODE | NVME_DNR;
+    }
+
+    *slba = ((uint64_t)dw11) << 32 | dw10;
+    if (unlikely(*slba >= ns->id_ns.nsze)) {
+        trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
+        *slba = 0;
+        return NVME_LBA_RANGE | NVME_DNR;
+    }
+
+    *zone_idx = nvme_zone_idx(ns, *slba);
+    assert(*zone_idx < ns->num_zones);
+
+    return NVME_SUCCESS;
+}
+
+typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
+                                 NvmeRequest *);
+
+enum NvmeZoneProcessingMask {
+    NVME_PROC_CURRENT_ZONE    = 0,
+    NVME_PROC_OPENED_ZONES    = 1 << 0,
+    NVME_PROC_CLOSED_ZONES    = 1 << 1,
+    NVME_PROC_READ_ONLY_ZONES = 1 << 2,
+    NVME_PROC_FULL_ZONES      = 1 << 3,
+};
+
+static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
+                               NvmeZoneState state, NvmeRequest *req)
+{
+    return nvme_zrm_open(ns, zone);
+}
+
+static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
+                                NvmeZoneState state, NvmeRequest *req)
+{
+    return nvme_zrm_close(ns, zone);
+}
+
+static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
+                                 NvmeZoneState state, NvmeRequest *req)
+{
+    return nvme_zrm_finish(ns, zone);
+}
+
+static uint16_t nvme_reset_zone(NvmeNamespace *ns, NvmeZone *zone,
+                                NvmeZoneState state, NvmeRequest *req)
+{
+    uintptr_t *resets = (uintptr_t *)&req->opaque;
+    struct nvme_zone_reset_ctx *ctx;
+
+    switch (state) {
+    case NVME_ZONE_STATE_EMPTY:
+        return NVME_SUCCESS;
+    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
+    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
+    case NVME_ZONE_STATE_CLOSED:
+    case NVME_ZONE_STATE_FULL:
+        break;
+    default:
+        return NVME_ZONE_INVAL_TRANSITION;
+    }
+
+    /*
+     * The zone reset aio callback needs to know the zone that is being reset
+     * in order to transition the zone on completion.
+     */
+    ctx = g_new(struct nvme_zone_reset_ctx, 1);
+    ctx->req = req;
+    ctx->zone = zone;
+
+    (*resets)++;
+
+    blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_l2b(ns, zone->d.zslba),
+                          nvme_l2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
+                          nvme_aio_zone_reset_cb, ctx);
+
+    return NVME_NO_COMPLETE;
+}
+
+static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
+                                  NvmeZoneState state, NvmeRequest *req)
+{
+    switch (state) {
+    case NVME_ZONE_STATE_READ_ONLY:
+        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
+        /* fall through */
+    case NVME_ZONE_STATE_OFFLINE:
+        return NVME_SUCCESS;
+    default:
+        return NVME_ZONE_INVAL_TRANSITION;
+    }
+}
+
+static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
+{
+    uint16_t status;
+    uint8_t state = nvme_get_zone_state(zone);
+
+    if (state == NVME_ZONE_STATE_EMPTY) {
+        status = nvme_aor_check(ns, 1, 0);
+        if (status) {
+            return status;
+        }
+        nvme_aor_inc_active(ns);
+        zone->d.za |= NVME_ZA_ZD_EXT_VALID;
+        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
+        return NVME_SUCCESS;
+    }
+
+    return NVME_ZONE_INVAL_TRANSITION;
+}
+
+static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
+                                    enum NvmeZoneProcessingMask proc_mask,
+                                    op_handler_t op_hndlr, NvmeRequest *req)
+{
+    uint16_t status = NVME_SUCCESS;
+    NvmeZoneState zs = nvme_get_zone_state(zone);
+    bool proc_zone;
+
+    switch (zs) {
+    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
+    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
+        proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
+        break;
+    case NVME_ZONE_STATE_CLOSED:
+        proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
+        break;
+    case NVME_ZONE_STATE_READ_ONLY:
+        proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
+        break;
+    case NVME_ZONE_STATE_FULL:
+        proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
+        break;
+    default:
+        proc_zone = false;
+    }
+
+    if (proc_zone) {
+        status = op_hndlr(ns, zone, zs, req);
+    }
+
+    return status;
+}
+
+static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
+                                enum NvmeZoneProcessingMask proc_mask,
+                                op_handler_t op_hndlr, NvmeRequest *req)
+{
+    NvmeZone *next;
+    uint16_t status = NVME_SUCCESS;
+    int i;
+
+    if (!proc_mask) {
+        status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
+    } else {
+        if (proc_mask & NVME_PROC_CLOSED_ZONES) {
+            QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
+                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
+                                             req);
+                if (status && status != NVME_NO_COMPLETE) {
+                    goto out;
+                }
+            }
+        }
+        if (proc_mask & NVME_PROC_OPENED_ZONES) {
+            QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
+                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
+                                             req);
+                if (status && status != NVME_NO_COMPLETE) {
+                    goto out;
+                }
+            }
+
+            QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
+                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
+                                             req);
+                if (status && status != NVME_NO_COMPLETE) {
+                    goto out;
+                }
+            }
+        }
+        if (proc_mask & NVME_PROC_FULL_ZONES) {
+            QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
+                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
+                                             req);
+                if (status && status != NVME_NO_COMPLETE) {
+                    goto out;
+                }
+            }
+        }
+
+        if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
+            for (i = 0; i < ns->num_zones; i++, zone++) {
+                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
+                                             req);
+                if (status && status != NVME_NO_COMPLETE) {
+                    goto out;
+                }
+            }
+        }
+    }
+
+out:
+    return status;
+}
+
+static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
+    NvmeNamespace *ns = req->ns;
+    NvmeZone *zone;
+    uintptr_t *resets;
+    uint8_t *zd_ext;
+    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
+    uint64_t slba = 0;
+    uint32_t zone_idx = 0;
+    uint16_t status;
+    uint8_t action;
+    bool all;
+    enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
+
+    action = dw13 & 0xff;
+    all = dw13 & 0x100;
+
+    req->status = NVME_SUCCESS;
+
+    if (!all) {
+        status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
+        if (status) {
+            return status;
+        }
+    }
+
+    zone = &ns->zone_array[zone_idx];
+    if (slba != zone->d.zslba) {
+        trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    switch (action) {
+
+    case NVME_ZONE_ACTION_OPEN:
+        if (all) {
+            proc_mask = NVME_PROC_CLOSED_ZONES;
+        }
+        trace_pci_nvme_open_zone(slba, zone_idx, all);
+        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
+        break;
+
+    case NVME_ZONE_ACTION_CLOSE:
+        if (all) {
+            proc_mask = NVME_PROC_OPENED_ZONES;
+        }
+        trace_pci_nvme_close_zone(slba, zone_idx, all);
+        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
+        break;
+
+    case NVME_ZONE_ACTION_FINISH:
+        if (all) {
+            proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
+        }
+        trace_pci_nvme_finish_zone(slba, zone_idx, all);
+        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
+        break;
+
+    case NVME_ZONE_ACTION_RESET:
+        resets = (uintptr_t *)&req->opaque;
+
+        if (all) {
+            proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES |
+                NVME_PROC_FULL_ZONES;
+        }
+        trace_pci_nvme_reset_zone(slba, zone_idx, all);
+
+        *resets = 1;
+
+        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_reset_zone, req);
+
+        (*resets)--;
+
+        return *resets ? NVME_NO_COMPLETE : req->status;
+
+    case NVME_ZONE_ACTION_OFFLINE:
+        if (all) {
+            proc_mask = NVME_PROC_READ_ONLY_ZONES;
+        }
+        trace_pci_nvme_offline_zone(slba, zone_idx, all);
+        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
+        break;
+
+    case NVME_ZONE_ACTION_SET_ZD_EXT:
+        trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
+        if (all || !ns->params.zd_extension_size) {
+            return NVME_INVALID_FIELD | NVME_DNR;
+        }
+        zd_ext = nvme_get_zd_extension(ns, zone_idx);
+        status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
+        if (status) {
+            trace_pci_nvme_err_zd_extension_map_error(zone_idx);
+            return status;
+        }
+
+        status = nvme_set_zd_ext(ns, zone);
+        if (status == NVME_SUCCESS) {
+            trace_pci_nvme_zd_extension_set(zone_idx);
+            return status;
+        }
+        break;
+
+    default:
+        trace_pci_nvme_err_invalid_mgmt_action(action);
+        status = NVME_INVALID_FIELD;
+    }
+
+    if (status == NVME_ZONE_INVAL_TRANSITION) {
+        trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
+                                                         zone->d.za);
+    }
+    if (status) {
+        status |= NVME_DNR;
+    }
+
+    return status;
+}
+
+static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
+{
+    NvmeZoneState zs = nvme_get_zone_state(zl);
+
+    switch (zafs) {
+    case NVME_ZONE_REPORT_ALL:
+        return true;
+    case NVME_ZONE_REPORT_EMPTY:
+        return zs == NVME_ZONE_STATE_EMPTY;
+    case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
+        return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
+    case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
+        return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
+    case NVME_ZONE_REPORT_CLOSED:
+        return zs == NVME_ZONE_STATE_CLOSED;
+    case NVME_ZONE_REPORT_FULL:
+        return zs == NVME_ZONE_STATE_FULL;
+    case NVME_ZONE_REPORT_READ_ONLY:
+        return zs == NVME_ZONE_STATE_READ_ONLY;
+    case NVME_ZONE_REPORT_OFFLINE:
+        return zs == NVME_ZONE_STATE_OFFLINE;
+    default:
+        return false;
+    }
+}
+
+static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
+    NvmeNamespace *ns = req->ns;
+    /* cdw12 is zero-based number of dwords to return. Convert to bytes */
+    uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
+    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
+    uint32_t zone_idx, zra, zrasf, partial;
+    uint64_t max_zones, nr_zones = 0;
+    uint16_t status;
+    uint64_t slba;
+    NvmeZoneDescr *z;
+    NvmeZone *zone;
+    NvmeZoneReportHeader *header;
+    void *buf, *buf_p;
+    size_t zone_entry_sz;
+    int i;
+
+    req->status = NVME_SUCCESS;
+
+    status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
+    if (status) {
+        return status;
+    }
+
+    zra = dw13 & 0xff;
+    if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+    if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    zrasf = (dw13 >> 8) & 0xff;
+    if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    if (data_size < sizeof(NvmeZoneReportHeader)) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    status = nvme_check_mdts(n, data_size);
+    if (status) {
+        return status;
+    }
+
+    partial = (dw13 >> 16) & 0x01;
+
+    zone_entry_sz = sizeof(NvmeZoneDescr);
+    if (zra == NVME_ZONE_REPORT_EXTENDED) {
+        zone_entry_sz += ns->params.zd_extension_size;
+    }
+
+    max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
+    buf = g_malloc0(data_size);
+
+    zone = &ns->zone_array[zone_idx];
+    for (i = zone_idx; i < ns->num_zones; i++) {
+        if (partial && nr_zones >= max_zones) {
+            break;
+        }
+        if (nvme_zone_matches_filter(zrasf, zone++)) {
+            nr_zones++;
+        }
+    }
+    header = (NvmeZoneReportHeader *)buf;
+    header->nr_zones = cpu_to_le64(nr_zones);
+
+    buf_p = buf + sizeof(NvmeZoneReportHeader);
+    for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
+        zone = &ns->zone_array[zone_idx];
+        if (nvme_zone_matches_filter(zrasf, zone)) {
+            z = (NvmeZoneDescr *)buf_p;
+            buf_p += sizeof(NvmeZoneDescr);
+
+            z->zt = zone->d.zt;
+            z->zs = zone->d.zs;
+            z->zcap = cpu_to_le64(zone->d.zcap);
+            z->zslba = cpu_to_le64(zone->d.zslba);
+            z->za = zone->d.za;
+
+            if (nvme_wp_is_valid(zone)) {
+                z->wp = cpu_to_le64(zone->d.wp);
+            } else {
+                z->wp = cpu_to_le64(~0ULL);
+            }
+
+            if (zra == NVME_ZONE_REPORT_EXTENDED) {
+                if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
+                    memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
+                           ns->params.zd_extension_size);
+                }
+                buf_p += ns->params.zd_extension_size;
+            }
+
+            max_zones--;
+        }
+    }
+
+    status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
+
+    g_free(buf);
+
+    return status;
+}
+
+static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeNamespace *ns;
+    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
+
+    trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
+                          req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
+
+    if (!nvme_nsid_valid(n, nsid)) {
+        return NVME_INVALID_NSID | NVME_DNR;
+    }
+
+    /*
+     * In the base NVM command set, Flush may apply to all namespaces
+     * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
+     * along with TP 4056 (Namespace Types), it may be pretty screwed up.
+     *
+     * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
+     * opcode with a specific command since we cannot determine a unique I/O
+     * command set. Opcode 0h could have any other meaning than something
+     * equivalent to flushing and say it DOES have completely different
+     * semantics in some other command set - does an NSID of FFFFFFFFh then
+     * mean "for all namespaces, apply whatever command set specific command
+     * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
+     * whatever command that uses the 0h opcode if, and only if, it allows NSID
+     * to be FFFFFFFFh"?
+     *
+     * Anyway (and luckily), for now, we do not care about this since the
+     * device only supports namespace types that includes the NVM Flush command
+     * (NVM and Zoned), so always do an NVM Flush.
+     */
+    if (req->cmd.opcode == NVME_CMD_FLUSH) {
+        return nvme_flush(n, req);
+    }
+
+    ns = nvme_ns(n, nsid);
+    if (unlikely(!ns)) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
+        trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
+        return NVME_INVALID_OPCODE | NVME_DNR;
+    }
+
+    if (ns->status) {
+        return ns->status;
+    }
+
+    req->ns = ns;
+
+    switch (req->cmd.opcode) {
+    case NVME_CMD_WRITE_ZEROES:
+        return nvme_write_zeroes(n, req);
+    case NVME_CMD_ZONE_APPEND:
+        return nvme_zone_append(n, req);
+    case NVME_CMD_WRITE:
+        return nvme_write(n, req);
+    case NVME_CMD_READ:
+        return nvme_read(n, req);
+    case NVME_CMD_COMPARE:
+        return nvme_compare(n, req);
+    case NVME_CMD_DSM:
+        return nvme_dsm(n, req);
+    case NVME_CMD_VERIFY:
+        return nvme_verify(n, req);
+    case NVME_CMD_COPY:
+        return nvme_copy(n, req);
+    case NVME_CMD_ZONE_MGMT_SEND:
+        return nvme_zone_mgmt_send(n, req);
+    case NVME_CMD_ZONE_MGMT_RECV:
+        return nvme_zone_mgmt_recv(n, req);
+    default:
+        assert(false);
+    }
+
+    return NVME_INVALID_OPCODE | NVME_DNR;
+}
+
+static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
+{
+    n->sq[sq->sqid] = NULL;
+    timer_free(sq->timer);
+    g_free(sq->io_req);
+    if (sq->sqid) {
+        g_free(sq);
+    }
+}
+
+static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
+    NvmeRequest *r, *next;
+    NvmeSQueue *sq;
+    NvmeCQueue *cq;
+    uint16_t qid = le16_to_cpu(c->qid);
+    uint32_t nsid;
+
+    if (unlikely(!qid || nvme_check_sqid(n, qid))) {
+        trace_pci_nvme_err_invalid_del_sq(qid);
+        return NVME_INVALID_QID | NVME_DNR;
+    }
+
+    trace_pci_nvme_del_sq(qid);
+
+    sq = n->sq[qid];
+    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
+        r = QTAILQ_FIRST(&sq->out_req_list);
+        if (r->aiocb) {
+            blk_aio_cancel(r->aiocb);
+        }
+    }
+
+    /*
+     * Drain all namespaces if there are still outstanding requests that we
+     * could not cancel explicitly.
+     */
+    if (!QTAILQ_EMPTY(&sq->out_req_list)) {
+        for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
+            NvmeNamespace *ns = nvme_ns(n, nsid);
+            if (ns) {
+                nvme_ns_drain(ns);
+            }
+        }
+    }
+
+    assert(QTAILQ_EMPTY(&sq->out_req_list));
+
+    if (!nvme_check_cqid(n, sq->cqid)) {
+        cq = n->cq[sq->cqid];
+        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
+
+        nvme_post_cqes(cq);
+        QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
+            if (r->sq == sq) {
+                QTAILQ_REMOVE(&cq->req_list, r, entry);
+                QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
+            }
+        }
+    }
+
+    nvme_free_sq(sq, n);
+    return NVME_SUCCESS;
+}
+
+static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
+                         uint16_t sqid, uint16_t cqid, uint16_t size)
+{
+    int i;
+    NvmeCQueue *cq;
+
+    sq->ctrl = n;
+    sq->dma_addr = dma_addr;
+    sq->sqid = sqid;
+    sq->size = size;
+    sq->cqid = cqid;
+    sq->head = sq->tail = 0;
+    sq->io_req = g_new0(NvmeRequest, sq->size);
+
+    QTAILQ_INIT(&sq->req_list);
+    QTAILQ_INIT(&sq->out_req_list);
+    for (i = 0; i < sq->size; i++) {
+        sq->io_req[i].sq = sq;
+        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
+    }
+    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
+
+    assert(n->cq[cqid]);
+    cq = n->cq[cqid];
+    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
+    n->sq[sqid] = sq;
+}
+
+static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeSQueue *sq;
+    NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
+
+    uint16_t cqid = le16_to_cpu(c->cqid);
+    uint16_t sqid = le16_to_cpu(c->sqid);
+    uint16_t qsize = le16_to_cpu(c->qsize);
+    uint16_t qflags = le16_to_cpu(c->sq_flags);
+    uint64_t prp1 = le64_to_cpu(c->prp1);
+
+    trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
+
+    if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
+        trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
+        return NVME_INVALID_CQID | NVME_DNR;
+    }
+    if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
+        n->sq[sqid] != NULL)) {
+        trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
+        return NVME_INVALID_QID | NVME_DNR;
+    }
+    if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
+        trace_pci_nvme_err_invalid_create_sq_size(qsize);
+        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
+    }
+    if (unlikely(prp1 & (n->page_size - 1))) {
+        trace_pci_nvme_err_invalid_create_sq_addr(prp1);
+        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
+    }
+    if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
+        trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+    sq = g_malloc0(sizeof(*sq));
+    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
+    return NVME_SUCCESS;
+}
+
+struct nvme_stats {
+    uint64_t units_read;
+    uint64_t units_written;
+    uint64_t read_commands;
+    uint64_t write_commands;
+};
+
+static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
+{
+    BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
+
+    stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
+    stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
+    stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
+    stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
+}
+
+static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
+                                uint64_t off, NvmeRequest *req)
+{
+    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
+    struct nvme_stats stats = { 0 };
+    NvmeSmartLog smart = { 0 };
+    uint32_t trans_len;
+    NvmeNamespace *ns;
+    time_t current_ms;
+
+    if (off >= sizeof(smart)) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    if (nsid != 0xffffffff) {
+        ns = nvme_ns(n, nsid);
+        if (!ns) {
+            return NVME_INVALID_NSID | NVME_DNR;
+        }
+        nvme_set_blk_stats(ns, &stats);
+    } else {
+        int i;
+
+        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+            ns = nvme_ns(n, i);
+            if (!ns) {
+                continue;
+            }
+            nvme_set_blk_stats(ns, &stats);
+        }
+    }
+
+    trans_len = MIN(sizeof(smart) - off, buf_len);
+    smart.critical_warning = n->smart_critical_warning;
+
+    smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
+                                                        1000));
+    smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
+                                                           1000));
+    smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
+    smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
+
+    smart.temperature = cpu_to_le16(n->temperature);
+
+    if ((n->temperature >= n->features.temp_thresh_hi) ||
+        (n->temperature <= n->features.temp_thresh_low)) {
+        smart.critical_warning |= NVME_SMART_TEMPERATURE;
+    }
+
+    current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
+    smart.power_on_hours[0] =
+        cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
+
+    if (!rae) {
+        nvme_clear_events(n, NVME_AER_TYPE_SMART);
+    }
+
+    return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
+}
+
+static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
+                                 NvmeRequest *req)
+{
+    uint32_t trans_len;
+    NvmeFwSlotInfoLog fw_log = {
+        .afi = 0x1,
+    };
+
+    if (off >= sizeof(fw_log)) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
+    trans_len = MIN(sizeof(fw_log) - off, buf_len);
+
+    return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
+}
+
+static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
+                                uint64_t off, NvmeRequest *req)
+{
+    uint32_t trans_len;
+    NvmeErrorLog errlog;
+
+    if (off >= sizeof(errlog)) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    if (!rae) {
+        nvme_clear_events(n, NVME_AER_TYPE_ERROR);
+    }
+
+    memset(&errlog, 0x0, sizeof(errlog));
+    trans_len = MIN(sizeof(errlog) - off, buf_len);
+
+    return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
+}
+
+static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
+                                    uint64_t off, NvmeRequest *req)
+{
+    uint32_t nslist[1024];
+    uint32_t trans_len;
+    int i = 0;
+    uint32_t nsid;
+
+    memset(nslist, 0x0, sizeof(nslist));
+    trans_len = MIN(sizeof(nslist) - off, buf_len);
+
+    while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
+            NVME_CHANGED_NSID_SIZE) {
+        /*
+         * If more than 1024 namespaces, the first entry in the log page should
+         * be set to FFFFFFFFh and the others to 0 as spec.
+         */
+        if (i == ARRAY_SIZE(nslist)) {
+            memset(nslist, 0x0, sizeof(nslist));
+            nslist[0] = 0xffffffff;
+            break;
+        }
+
+        nslist[i++] = nsid;
+        clear_bit(nsid, n->changed_nsids);
+    }
+
+    /*
+     * Remove all the remaining list entries in case returns directly due to
+     * more than 1024 namespaces.
+     */
+    if (nslist[0] == 0xffffffff) {
+        bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
+    }
+
+    if (!rae) {
+        nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
+    }
+
+    return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
+}
+
+static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
+                                 uint64_t off, NvmeRequest *req)
+{
+    NvmeEffectsLog log = {};
+    const uint32_t *src_iocs = NULL;
+    uint32_t trans_len;
+
+    if (off >= sizeof(log)) {
+        trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    switch (NVME_CC_CSS(n->bar.cc)) {
+    case NVME_CC_CSS_NVM:
+        src_iocs = nvme_cse_iocs_nvm;
+        /* fall through */
+    case NVME_CC_CSS_ADMIN_ONLY:
+        break;
+    case NVME_CC_CSS_CSI:
+        switch (csi) {
+        case NVME_CSI_NVM:
+            src_iocs = nvme_cse_iocs_nvm;
+            break;
+        case NVME_CSI_ZONED:
+            src_iocs = nvme_cse_iocs_zoned;
+            break;
+        }
+    }
+
+    memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
+
+    if (src_iocs) {
+        memcpy(log.iocs, src_iocs, sizeof(log.iocs));
+    }
+
+    trans_len = MIN(sizeof(log) - off, buf_len);
+
+    return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
+}
+
+static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeCmd *cmd = &req->cmd;
+
+    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
+    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
+    uint32_t dw12 = le32_to_cpu(cmd->cdw12);
+    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
+    uint8_t  lid = dw10 & 0xff;
+    uint8_t  lsp = (dw10 >> 8) & 0xf;
+    uint8_t  rae = (dw10 >> 15) & 0x1;
+    uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
+    uint32_t numdl, numdu;
+    uint64_t off, lpol, lpou;
+    size_t   len;
+    uint16_t status;
+
+    numdl = (dw10 >> 16);
+    numdu = (dw11 & 0xffff);
+    lpol = dw12;
+    lpou = dw13;
+
+    len = (((numdu << 16) | numdl) + 1) << 2;
+    off = (lpou << 32ULL) | lpol;
+
+    if (off & 0x3) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
+
+    status = nvme_check_mdts(n, len);
+    if (status) {
+        return status;
+    }
+
+    switch (lid) {
+    case NVME_LOG_ERROR_INFO:
+        return nvme_error_info(n, rae, len, off, req);
+    case NVME_LOG_SMART_INFO:
+        return nvme_smart_info(n, rae, len, off, req);
+    case NVME_LOG_FW_SLOT_INFO:
+        return nvme_fw_log_info(n, len, off, req);
+    case NVME_LOG_CHANGED_NSLIST:
+        return nvme_changed_nslist(n, rae, len, off, req);
+    case NVME_LOG_CMD_EFFECTS:
+        return nvme_cmd_effects(n, csi, len, off, req);
+    default:
+        trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+}
+
+static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
+{
+    n->cq[cq->cqid] = NULL;
+    timer_free(cq->timer);
+    if (msix_enabled(&n->parent_obj)) {
+        msix_vector_unuse(&n->parent_obj, cq->vector);
+    }
+    if (cq->cqid) {
+        g_free(cq);
+    }
+}
+
+static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
+    NvmeCQueue *cq;
+    uint16_t qid = le16_to_cpu(c->qid);
+
+    if (unlikely(!qid || nvme_check_cqid(n, qid))) {
+        trace_pci_nvme_err_invalid_del_cq_cqid(qid);
+        return NVME_INVALID_CQID | NVME_DNR;
+    }
+
+    cq = n->cq[qid];
+    if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
+        trace_pci_nvme_err_invalid_del_cq_notempty(qid);
+        return NVME_INVALID_QUEUE_DEL;
+    }
+    nvme_irq_deassert(n, cq);
+    trace_pci_nvme_del_cq(qid);
+    nvme_free_cq(cq, n);
+    return NVME_SUCCESS;
+}
+
+static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
+                         uint16_t cqid, uint16_t vector, uint16_t size,
+                         uint16_t irq_enabled)
+{
+    int ret;
+
+    if (msix_enabled(&n->parent_obj)) {
+        ret = msix_vector_use(&n->parent_obj, vector);
+        assert(ret == 0);
+    }
+    cq->ctrl = n;
+    cq->cqid = cqid;
+    cq->size = size;
+    cq->dma_addr = dma_addr;
+    cq->phase = 1;
+    cq->irq_enabled = irq_enabled;
+    cq->vector = vector;
+    cq->head = cq->tail = 0;
+    QTAILQ_INIT(&cq->req_list);
+    QTAILQ_INIT(&cq->sq_list);
+    n->cq[cqid] = cq;
+    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
+}
+
+static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeCQueue *cq;
+    NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
+    uint16_t cqid = le16_to_cpu(c->cqid);
+    uint16_t vector = le16_to_cpu(c->irq_vector);
+    uint16_t qsize = le16_to_cpu(c->qsize);
+    uint16_t qflags = le16_to_cpu(c->cq_flags);
+    uint64_t prp1 = le64_to_cpu(c->prp1);
+
+    trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
+                             NVME_CQ_FLAGS_IEN(qflags) != 0);
+
+    if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
+        n->cq[cqid] != NULL)) {
+        trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
+        return NVME_INVALID_QID | NVME_DNR;
+    }
+    if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
+        trace_pci_nvme_err_invalid_create_cq_size(qsize);
+        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
+    }
+    if (unlikely(prp1 & (n->page_size - 1))) {
+        trace_pci_nvme_err_invalid_create_cq_addr(prp1);
+        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
+    }
+    if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
+        trace_pci_nvme_err_invalid_create_cq_vector(vector);
+        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
+    }
+    if (unlikely(vector >= n->params.msix_qsize)) {
+        trace_pci_nvme_err_invalid_create_cq_vector(vector);
+        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
+    }
+    if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
+        trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    cq = g_malloc0(sizeof(*cq));
+    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
+                 NVME_CQ_FLAGS_IEN(qflags));
+
+    /*
+     * It is only required to set qs_created when creating a completion queue;
+     * creating a submission queue without a matching completion queue will
+     * fail.
+     */
+    n->qs_created = true;
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
+{
+    uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
+
+    return nvme_c2h(n, id, sizeof(id), req);
+}
+
+static inline bool nvme_csi_has_nvm_support(NvmeNamespace *ns)
+{
+    switch (ns->csi) {
+    case NVME_CSI_NVM:
+    case NVME_CSI_ZONED:
+        return true;
+    }
+    return false;
+}
+
+static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
+{
+    trace_pci_nvme_identify_ctrl();
+
+    return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
+}
+
+static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
+    uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
+    NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
+
+    trace_pci_nvme_identify_ctrl_csi(c->csi);
+
+    switch (c->csi) {
+    case NVME_CSI_NVM:
+        id_nvm->vsl = n->params.vsl;
+        id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
+        break;
+
+    case NVME_CSI_ZONED:
+        ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
+        break;
+
+    default:
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    return nvme_c2h(n, id, sizeof(id), req);
+}
+
+static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
+{
+    NvmeNamespace *ns;
+    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
+    uint32_t nsid = le32_to_cpu(c->nsid);
+
+    trace_pci_nvme_identify_ns(nsid);
+
+    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
+        return NVME_INVALID_NSID | NVME_DNR;
+    }
+
+    ns = nvme_ns(n, nsid);
+    if (unlikely(!ns)) {
+        if (!active) {
+            ns = nvme_subsys_ns(n->subsys, nsid);
+            if (!ns) {
+                return nvme_rpt_empty_id_struct(n, req);
+            }
+        } else {
+            return nvme_rpt_empty_id_struct(n, req);
+        }
+    }
+
+    if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
+        return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
+    }
+
+    return NVME_INVALID_CMD_SET | NVME_DNR;
+}
+
+static uint16_t nvme_identify_ns_attached_list(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
+    uint16_t min_id = le16_to_cpu(c->ctrlid);
+    uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
+    uint16_t *ids = &list[1];
+    NvmeNamespace *ns;
+    NvmeCtrl *ctrl;
+    int cntlid, nr_ids = 0;
+
+    trace_pci_nvme_identify_ns_attached_list(min_id);
+
+    if (c->nsid == NVME_NSID_BROADCAST) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    ns = nvme_subsys_ns(n->subsys, c->nsid);
+    if (!ns) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
+        ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
+        if (!ctrl) {
+            continue;
+        }
+
+        if (!nvme_ns(ctrl, c->nsid)) {
+            continue;
+        }
+
+        ids[nr_ids++] = cntlid;
+    }
+
+    list[0] = nr_ids;
+
+    return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
+}
+
+static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
+        bool active)
+{
+    NvmeNamespace *ns;
+    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
+    uint32_t nsid = le32_to_cpu(c->nsid);
+
+    trace_pci_nvme_identify_ns_csi(nsid, c->csi);
+
+    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
+        return NVME_INVALID_NSID | NVME_DNR;
+    }
+
+    ns = nvme_ns(n, nsid);
+    if (unlikely(!ns)) {
+        if (!active) {
+            ns = nvme_subsys_ns(n->subsys, nsid);
+            if (!ns) {
+                return nvme_rpt_empty_id_struct(n, req);
+            }
+        } else {
+            return nvme_rpt_empty_id_struct(n, req);
+        }
+    }
+
+    if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
+        return nvme_rpt_empty_id_struct(n, req);
+    } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
+        return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
+                        req);
+    }
+
+    return NVME_INVALID_FIELD | NVME_DNR;
+}
+
+static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
+        bool active)
+{
+    NvmeNamespace *ns;
+    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
+    uint32_t min_nsid = le32_to_cpu(c->nsid);
+    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
+    static const int data_len = sizeof(list);
+    uint32_t *list_ptr = (uint32_t *)list;
+    int i, j = 0;
+
+    trace_pci_nvme_identify_nslist(min_nsid);
+
+    /*
+     * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
+     * since the Active Namespace ID List should return namespaces with ids
+     * *higher* than the NSID specified in the command. This is also specified
+     * in the spec (NVM Express v1.3d, Section 5.15.4).
+     */
+    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
+        return NVME_INVALID_NSID | NVME_DNR;
+    }
+
+    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+        ns = nvme_ns(n, i);
+        if (!ns) {
+            if (!active) {
+                ns = nvme_subsys_ns(n->subsys, i);
+                if (!ns) {
+                    continue;
+                }
+            } else {
+                continue;
+            }
+        }
+        if (ns->params.nsid <= min_nsid) {
+            continue;
+        }
+        list_ptr[j++] = cpu_to_le32(ns->params.nsid);
+        if (j == data_len / sizeof(uint32_t)) {
+            break;
+        }
+    }
+
+    return nvme_c2h(n, list, data_len, req);
+}
+
+static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
+        bool active)
+{
+    NvmeNamespace *ns;
+    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
+    uint32_t min_nsid = le32_to_cpu(c->nsid);
+    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
+    static const int data_len = sizeof(list);
+    uint32_t *list_ptr = (uint32_t *)list;
+    int i, j = 0;
+
+    trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
+
+    /*
+     * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
+     */
+    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
+        return NVME_INVALID_NSID | NVME_DNR;
+    }
+
+    if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+        ns = nvme_ns(n, i);
+        if (!ns) {
+            if (!active) {
+                ns = nvme_subsys_ns(n->subsys, i);
+                if (!ns) {
+                    continue;
+                }
+            } else {
+                continue;
+            }
+        }
+        if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
+            continue;
+        }
+        list_ptr[j++] = cpu_to_le32(ns->params.nsid);
+        if (j == data_len / sizeof(uint32_t)) {
+            break;
+        }
+    }
+
+    return nvme_c2h(n, list, data_len, req);
+}
+
+static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeNamespace *ns;
+    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
+    uint32_t nsid = le32_to_cpu(c->nsid);
+    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
+
+    struct data {
+        struct {
+            NvmeIdNsDescr hdr;
+            uint8_t v[NVME_NIDL_UUID];
+        } uuid;
+        struct {
+            NvmeIdNsDescr hdr;
+            uint8_t v;
+        } csi;
+    };
+
+    struct data *ns_descrs = (struct data *)list;
+
+    trace_pci_nvme_identify_ns_descr_list(nsid);
+
+    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
+        return NVME_INVALID_NSID | NVME_DNR;
+    }
+
+    ns = nvme_ns(n, nsid);
+    if (unlikely(!ns)) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    /*
+     * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
+     * structure, a Namespace UUID (nidt = 3h) must be reported in the
+     * Namespace Identification Descriptor. Add the namespace UUID here.
+     */
+    ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
+    ns_descrs->uuid.hdr.nidl = NVME_NIDL_UUID;
+    memcpy(&ns_descrs->uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
+
+    ns_descrs->csi.hdr.nidt = NVME_NIDT_CSI;
+    ns_descrs->csi.hdr.nidl = NVME_NIDL_CSI;
+    ns_descrs->csi.v = ns->csi;
+
+    return nvme_c2h(n, list, sizeof(list), req);
+}
+
+static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
+{
+    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
+    static const int data_len = sizeof(list);
+
+    trace_pci_nvme_identify_cmd_set();
+
+    NVME_SET_CSI(*list, NVME_CSI_NVM);
+    NVME_SET_CSI(*list, NVME_CSI_ZONED);
+
+    return nvme_c2h(n, list, data_len, req);
+}
+
+static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
+
+    trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
+                            c->csi);
+
+    switch (c->cns) {
+    case NVME_ID_CNS_NS:
+        return nvme_identify_ns(n, req, true);
+    case NVME_ID_CNS_NS_PRESENT:
+        return nvme_identify_ns(n, req, false);
+    case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
+        return nvme_identify_ns_attached_list(n, req);
+    case NVME_ID_CNS_CS_NS:
+        return nvme_identify_ns_csi(n, req, true);
+    case NVME_ID_CNS_CS_NS_PRESENT:
+        return nvme_identify_ns_csi(n, req, false);
+    case NVME_ID_CNS_CTRL:
+        return nvme_identify_ctrl(n, req);
+    case NVME_ID_CNS_CS_CTRL:
+        return nvme_identify_ctrl_csi(n, req);
+    case NVME_ID_CNS_NS_ACTIVE_LIST:
+        return nvme_identify_nslist(n, req, true);
+    case NVME_ID_CNS_NS_PRESENT_LIST:
+        return nvme_identify_nslist(n, req, false);
+    case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
+        return nvme_identify_nslist_csi(n, req, true);
+    case NVME_ID_CNS_CS_NS_PRESENT_LIST:
+        return nvme_identify_nslist_csi(n, req, false);
+    case NVME_ID_CNS_NS_DESCR_LIST:
+        return nvme_identify_ns_descr_list(n, req);
+    case NVME_ID_CNS_IO_COMMAND_SET:
+        return nvme_identify_cmd_set(n, req);
+    default:
+        trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+}
+
+static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
+{
+    uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
+
+    req->cqe.result = 1;
+    if (nvme_check_sqid(n, sqid)) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    return NVME_SUCCESS;
+}
+
+static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
+{
+    trace_pci_nvme_setfeat_timestamp(ts);
+
+    n->host_timestamp = le64_to_cpu(ts);
+    n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
+}
+
+static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
+{
+    uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
+    uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
+
+    union nvme_timestamp {
+        struct {
+            uint64_t timestamp:48;
+            uint64_t sync:1;
+            uint64_t origin:3;
+            uint64_t rsvd1:12;
+        };
+        uint64_t all;
+    };
+
+    union nvme_timestamp ts;
+    ts.all = 0;
+    ts.timestamp = n->host_timestamp + elapsed_time;
+
+    /* If the host timestamp is non-zero, set the timestamp origin */
+    ts.origin = n->host_timestamp ? 0x01 : 0x00;
+
+    trace_pci_nvme_getfeat_timestamp(ts.all);
+
+    return cpu_to_le64(ts.all);
+}
+
+static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
+{
+    uint64_t timestamp = nvme_get_timestamp(n);
+
+    return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
+}
+
+static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeCmd *cmd = &req->cmd;
+    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
+    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
+    uint32_t nsid = le32_to_cpu(cmd->nsid);
+    uint32_t result;
+    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
+    NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
+    uint16_t iv;
+    NvmeNamespace *ns;
+    int i;
+
+    static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
+        [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
+    };
+
+    trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
+
+    if (!nvme_feature_support[fid]) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
+        if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
+            /*
+             * The Reservation Notification Mask and Reservation Persistence
+             * features require a status code of Invalid Field in Command when
+             * NSID is FFFFFFFFh. Since the device does not support those
+             * features we can always return Invalid Namespace or Format as we
+             * should do for all other features.
+             */
+            return NVME_INVALID_NSID | NVME_DNR;
+        }
+
+        if (!nvme_ns(n, nsid)) {
+            return NVME_INVALID_FIELD | NVME_DNR;
+        }
+    }
+
+    switch (sel) {
+    case NVME_GETFEAT_SELECT_CURRENT:
+        break;
+    case NVME_GETFEAT_SELECT_SAVED:
+        /* no features are saveable by the controller; fallthrough */
+    case NVME_GETFEAT_SELECT_DEFAULT:
+        goto defaults;
+    case NVME_GETFEAT_SELECT_CAP:
+        result = nvme_feature_cap[fid];
+        goto out;
+    }
+
+    switch (fid) {
+    case NVME_TEMPERATURE_THRESHOLD:
+        result = 0;
+
+        /*
+         * The controller only implements the Composite Temperature sensor, so
+         * return 0 for all other sensors.
+         */
+        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
+            goto out;
+        }
+
+        switch (NVME_TEMP_THSEL(dw11)) {
+        case NVME_TEMP_THSEL_OVER:
+            result = n->features.temp_thresh_hi;
+            goto out;
+        case NVME_TEMP_THSEL_UNDER:
+            result = n->features.temp_thresh_low;
+            goto out;
+        }
+
+        return NVME_INVALID_FIELD | NVME_DNR;
+    case NVME_ERROR_RECOVERY:
+        if (!nvme_nsid_valid(n, nsid)) {
+            return NVME_INVALID_NSID | NVME_DNR;
+        }
+
+        ns = nvme_ns(n, nsid);
+        if (unlikely(!ns)) {
+            return NVME_INVALID_FIELD | NVME_DNR;
+        }
+
+        result = ns->features.err_rec;
+        goto out;
+    case NVME_VOLATILE_WRITE_CACHE:
+        result = 0;
+        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+            ns = nvme_ns(n, i);
+            if (!ns) {
+                continue;
+            }
+
+            result = blk_enable_write_cache(ns->blkconf.blk);
+            if (result) {
+                break;
+            }
+        }
+        trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
+        goto out;
+    case NVME_ASYNCHRONOUS_EVENT_CONF:
+        result = n->features.async_config;
+        goto out;
+    case NVME_TIMESTAMP:
+        return nvme_get_feature_timestamp(n, req);
+    default:
+        break;
+    }
+
+defaults:
+    switch (fid) {
+    case NVME_TEMPERATURE_THRESHOLD:
+        result = 0;
+
+        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
+            break;
+        }
+
+        if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
+            result = NVME_TEMPERATURE_WARNING;
+        }
+
+        break;
+    case NVME_NUMBER_OF_QUEUES:
+        result = (n->params.max_ioqpairs - 1) |
+            ((n->params.max_ioqpairs - 1) << 16);
+        trace_pci_nvme_getfeat_numq(result);
+        break;
+    case NVME_INTERRUPT_VECTOR_CONF:
+        iv = dw11 & 0xffff;
+        if (iv >= n->params.max_ioqpairs + 1) {
+            return NVME_INVALID_FIELD | NVME_DNR;
+        }
+
+        result = iv;
+        if (iv == n->admin_cq.vector) {
+            result |= NVME_INTVC_NOCOALESCING;
+        }
+        break;
+    default:
+        result = nvme_feature_default[fid];
+        break;
+    }
+
+out:
+    req->cqe.result = cpu_to_le32(result);
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
+{
+    uint16_t ret;
+    uint64_t timestamp;
+
+    ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
+    if (ret) {
+        return ret;
+    }
+
+    nvme_set_timestamp(n, timestamp);
+
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeNamespace *ns = NULL;
+
+    NvmeCmd *cmd = &req->cmd;
+    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
+    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
+    uint32_t nsid = le32_to_cpu(cmd->nsid);
+    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
+    uint8_t save = NVME_SETFEAT_SAVE(dw10);
+    int i;
+
+    trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
+
+    if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
+        return NVME_FID_NOT_SAVEABLE | NVME_DNR;
+    }
+
+    if (!nvme_feature_support[fid]) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
+        if (nsid != NVME_NSID_BROADCAST) {
+            if (!nvme_nsid_valid(n, nsid)) {
+                return NVME_INVALID_NSID | NVME_DNR;
+            }
+
+            ns = nvme_ns(n, nsid);
+            if (unlikely(!ns)) {
+                return NVME_INVALID_FIELD | NVME_DNR;
+            }
+        }
+    } else if (nsid && nsid != NVME_NSID_BROADCAST) {
+        if (!nvme_nsid_valid(n, nsid)) {
+            return NVME_INVALID_NSID | NVME_DNR;
+        }
+
+        return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
+    }
+
+    if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
+        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
+    }
+
+    switch (fid) {
+    case NVME_TEMPERATURE_THRESHOLD:
+        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
+            break;
+        }
+
+        switch (NVME_TEMP_THSEL(dw11)) {
+        case NVME_TEMP_THSEL_OVER:
+            n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
+            break;
+        case NVME_TEMP_THSEL_UNDER:
+            n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
+            break;
+        default:
+            return NVME_INVALID_FIELD | NVME_DNR;
+        }
+
+        if ((n->temperature >= n->features.temp_thresh_hi) ||
+            (n->temperature <= n->features.temp_thresh_low)) {
+            nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH);
+        }
+
+        break;
+    case NVME_ERROR_RECOVERY:
+        if (nsid == NVME_NSID_BROADCAST) {
+            for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+                ns = nvme_ns(n, i);
+
+                if (!ns) {
+                    continue;
+                }
+
+                if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
+                    ns->features.err_rec = dw11;
+                }
+            }
+
+            break;
+        }
+
+        assert(ns);
+        if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
+            ns->features.err_rec = dw11;
+        }
+        break;
+    case NVME_VOLATILE_WRITE_CACHE:
+        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+            ns = nvme_ns(n, i);
+            if (!ns) {
+                continue;
+            }
+
+            if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
+                blk_flush(ns->blkconf.blk);
+            }
+
+            blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
+        }
+
+        break;
+
+    case NVME_NUMBER_OF_QUEUES:
+        if (n->qs_created) {
+            return NVME_CMD_SEQ_ERROR | NVME_DNR;
+        }
+
+        /*
+         * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
+         * and NSQR.
+         */
+        if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
+            return NVME_INVALID_FIELD | NVME_DNR;
+        }
+
+        trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
+                                    ((dw11 >> 16) & 0xffff) + 1,
+                                    n->params.max_ioqpairs,
+                                    n->params.max_ioqpairs);
+        req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
+                                      ((n->params.max_ioqpairs - 1) << 16));
+        break;
+    case NVME_ASYNCHRONOUS_EVENT_CONF:
+        n->features.async_config = dw11;
+        break;
+    case NVME_TIMESTAMP:
+        return nvme_set_feature_timestamp(n, req);
+    case NVME_COMMAND_SET_PROFILE:
+        if (dw11 & 0x1ff) {
+            trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
+            return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
+        }
+        break;
+    default:
+        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
+    }
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
+{
+    trace_pci_nvme_aer(nvme_cid(req));
+
+    if (n->outstanding_aers > n->params.aerl) {
+        trace_pci_nvme_aer_aerl_exceeded();
+        return NVME_AER_LIMIT_EXCEEDED;
+    }
+
+    n->aer_reqs[n->outstanding_aers] = req;
+    n->outstanding_aers++;
+
+    if (!QTAILQ_EMPTY(&n->aer_queue)) {
+        nvme_process_aers(n);
+    }
+
+    return NVME_NO_COMPLETE;
+}
+
+static void nvme_update_dmrsl(NvmeCtrl *n)
+{
+    int nsid;
+
+    for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
+        NvmeNamespace *ns = nvme_ns(n, nsid);
+        if (!ns) {
+            continue;
+        }
+
+        n->dmrsl = MIN_NON_ZERO(n->dmrsl,
+                                BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
+    }
+}
+
+static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
+{
+    ns->iocs = nvme_cse_iocs_none;
+    switch (ns->csi) {
+    case NVME_CSI_NVM:
+        if (NVME_CC_CSS(n->bar.cc) != NVME_CC_CSS_ADMIN_ONLY) {
+            ns->iocs = nvme_cse_iocs_nvm;
+        }
+        break;
+    case NVME_CSI_ZONED:
+        if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_CSI) {
+            ns->iocs = nvme_cse_iocs_zoned;
+        } else if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_NVM) {
+            ns->iocs = nvme_cse_iocs_nvm;
+        }
+        break;
+    }
+}
+
+static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeNamespace *ns;
+    NvmeCtrl *ctrl;
+    uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
+    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
+    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
+    bool attach = !(dw10 & 0xf);
+    uint16_t *nr_ids = &list[0];
+    uint16_t *ids = &list[1];
+    uint16_t ret;
+    int i;
+
+    trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
+
+    if (!nvme_nsid_valid(n, nsid)) {
+        return NVME_INVALID_NSID | NVME_DNR;
+    }
+
+    ns = nvme_subsys_ns(n->subsys, nsid);
+    if (!ns) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
+    if (ret) {
+        return ret;
+    }
+
+    if (!*nr_ids) {
+        return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
+    }
+
+    *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
+    for (i = 0; i < *nr_ids; i++) {
+        ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
+        if (!ctrl) {
+            return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
+        }
+
+        if (attach) {
+            if (nvme_ns(ctrl, nsid)) {
+                return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
+            }
+
+            if (ns->attached && !ns->params.shared) {
+                return NVME_NS_PRIVATE | NVME_DNR;
+            }
+
+            nvme_attach_ns(ctrl, ns);
+            nvme_select_iocs_ns(ctrl, ns);
+        } else {
+            if (!nvme_ns(ctrl, nsid)) {
+                return NVME_NS_NOT_ATTACHED | NVME_DNR;
+            }
+
+            ctrl->namespaces[nsid] = NULL;
+            ns->attached--;
+
+            nvme_update_dmrsl(ctrl);
+        }
+
+        /*
+         * Add namespace id to the changed namespace id list for event clearing
+         * via Get Log Page command.
+         */
+        if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
+            nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
+                               NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
+                               NVME_LOG_CHANGED_NSLIST);
+        }
+    }
+
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_format_ns(NvmeCtrl *n, NvmeNamespace *ns, uint8_t lbaf,
+                               uint8_t mset, uint8_t pi, uint8_t pil,
+                               NvmeRequest *req)
+{
+    int64_t len, offset;
+    struct nvme_aio_format_ctx *ctx;
+    BlockBackend *blk = ns->blkconf.blk;
+    uint16_t ms;
+    uintptr_t *num_formats = (uintptr_t *)&req->opaque;
+    int *count;
+
+    if (ns->params.zoned) {
+        return NVME_INVALID_FORMAT | NVME_DNR;
+    }
+
+    trace_pci_nvme_format_ns(nvme_cid(req), nvme_nsid(ns), lbaf, mset, pi, pil);
+
+    if (lbaf > ns->id_ns.nlbaf) {
+        return NVME_INVALID_FORMAT | NVME_DNR;
+    }
+
+    ms = ns->id_ns.lbaf[lbaf].ms;
+
+    if (pi && (ms < sizeof(NvmeDifTuple))) {
+        return NVME_INVALID_FORMAT | NVME_DNR;
+    }
+
+    if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    nvme_ns_drain(ns);
+    nvme_ns_shutdown(ns);
+    nvme_ns_cleanup(ns);
+
+    ns->id_ns.dps = (pil << 3) | pi;
+    ns->id_ns.flbas = lbaf | (mset << 4);
+
+    nvme_ns_init_format(ns);
+
+    ns->status = NVME_FORMAT_IN_PROGRESS;
+
+    len = ns->size;
+    offset = 0;
+
+    count = g_new(int, 1);
+    *count = 1;
+
+    (*num_formats)++;
+
+    while (len) {
+        ctx = g_new(struct nvme_aio_format_ctx, 1);
+        ctx->req = req;
+        ctx->ns = ns;
+        ctx->count = count;
+
+        size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
+
+        (*count)++;
+
+        blk_aio_pwrite_zeroes(blk, offset, bytes, BDRV_REQ_MAY_UNMAP,
+                              nvme_aio_format_cb, ctx);
+
+        offset += bytes;
+        len -= bytes;
+
+    }
+
+    if (--(*count)) {
+        return NVME_NO_COMPLETE;
+    }
+
+    g_free(count);
+    ns->status = 0x0;
+    (*num_formats)--;
+
+    return NVME_SUCCESS;
+}
+
+static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
+{
+    NvmeNamespace *ns;
+    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
+    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
+    uint8_t lbaf = dw10 & 0xf;
+    uint8_t mset = (dw10 >> 4) & 0x1;
+    uint8_t pi = (dw10 >> 5) & 0x7;
+    uint8_t pil = (dw10 >> 8) & 0x1;
+    uintptr_t *num_formats = (uintptr_t *)&req->opaque;
+    uint16_t status;
+    int i;
+
+    trace_pci_nvme_format(nvme_cid(req), nsid, lbaf, mset, pi, pil);
+
+    /* 1-initialize; see the comment in nvme_dsm */
+    *num_formats = 1;
+
+    if (nsid != NVME_NSID_BROADCAST) {
+        if (!nvme_nsid_valid(n, nsid)) {
+            return NVME_INVALID_NSID | NVME_DNR;
+        }
+
+        ns = nvme_ns(n, nsid);
+        if (!ns) {
+            return NVME_INVALID_FIELD | NVME_DNR;
+        }
+
+        status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req);
+        if (status && status != NVME_NO_COMPLETE) {
+            req->status = status;
+        }
+    } else {
+        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+            ns = nvme_ns(n, i);
+            if (!ns) {
+                continue;
+            }
+
+            status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req);
+            if (status && status != NVME_NO_COMPLETE) {
+                req->status = status;
+                break;
+            }
+        }
+    }
+
+    /* account for the 1-initialization */
+    if (--(*num_formats)) {
+        return NVME_NO_COMPLETE;
+    }
+
+    return req->status;
+}
+
+static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
+{
+    trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
+                             nvme_adm_opc_str(req->cmd.opcode));
+
+    if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
+        trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
+        return NVME_INVALID_OPCODE | NVME_DNR;
+    }
+
+    /* SGLs shall not be used for Admin commands in NVMe over PCIe */
+    if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
+        return NVME_INVALID_FIELD | NVME_DNR;
+    }
+
+    switch (req->cmd.opcode) {
+    case NVME_ADM_CMD_DELETE_SQ:
+        return nvme_del_sq(n, req);
+    case NVME_ADM_CMD_CREATE_SQ:
+        return nvme_create_sq(n, req);
+    case NVME_ADM_CMD_GET_LOG_PAGE:
+        return nvme_get_log(n, req);
+    case NVME_ADM_CMD_DELETE_CQ:
+        return nvme_del_cq(n, req);
+    case NVME_ADM_CMD_CREATE_CQ:
+        return nvme_create_cq(n, req);
+    case NVME_ADM_CMD_IDENTIFY:
+        return nvme_identify(n, req);
+    case NVME_ADM_CMD_ABORT:
+        return nvme_abort(n, req);
+    case NVME_ADM_CMD_SET_FEATURES:
+        return nvme_set_feature(n, req);
+    case NVME_ADM_CMD_GET_FEATURES:
+        return nvme_get_feature(n, req);
+    case NVME_ADM_CMD_ASYNC_EV_REQ:
+        return nvme_aer(n, req);
+    case NVME_ADM_CMD_NS_ATTACHMENT:
+        return nvme_ns_attachment(n, req);
+    case NVME_ADM_CMD_FORMAT_NVM:
+        return nvme_format(n, req);
+    default:
+        assert(false);
+    }
+
+    return NVME_INVALID_OPCODE | NVME_DNR;
+}
+
+static void nvme_process_sq(void *opaque)
+{
+    NvmeSQueue *sq = opaque;
+    NvmeCtrl *n = sq->ctrl;
+    NvmeCQueue *cq = n->cq[sq->cqid];
+
+    uint16_t status;
+    hwaddr addr;
+    NvmeCmd cmd;
+    NvmeRequest *req;
+
+    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
+        addr = sq->dma_addr + sq->head * n->sqe_size;
+        if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
+            trace_pci_nvme_err_addr_read(addr);
+            trace_pci_nvme_err_cfs();
+            n->bar.csts = NVME_CSTS_FAILED;
+            break;
+        }
+        nvme_inc_sq_head(sq);
+
+        req = QTAILQ_FIRST(&sq->req_list);
+        QTAILQ_REMOVE(&sq->req_list, req, entry);
+        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
+        nvme_req_clear(req);
+        req->cqe.cid = cmd.cid;
+        memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
+
+        status = sq->sqid ? nvme_io_cmd(n, req) :
+            nvme_admin_cmd(n, req);
+        if (status != NVME_NO_COMPLETE) {
+            req->status = status;
+            nvme_enqueue_req_completion(cq, req);
+        }
+    }
+}
+
+static void nvme_ctrl_reset(NvmeCtrl *n)
+{
+    NvmeNamespace *ns;
+    int i;
+
+    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+        ns = nvme_ns(n, i);
+        if (!ns) {
+            continue;
+        }
+
+        nvme_ns_drain(ns);
+    }
+
+    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
+        if (n->sq[i] != NULL) {
+            nvme_free_sq(n->sq[i], n);
+        }
+    }
+    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
+        if (n->cq[i] != NULL) {
+            nvme_free_cq(n->cq[i], n);
+        }
+    }
+
+    while (!QTAILQ_EMPTY(&n->aer_queue)) {
+        NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
+        QTAILQ_REMOVE(&n->aer_queue, event, entry);
+        g_free(event);
+    }
+
+    n->aer_queued = 0;
+    n->outstanding_aers = 0;
+    n->qs_created = false;
+
+    n->bar.cc = 0;
+}
+
+static void nvme_ctrl_shutdown(NvmeCtrl *n)
+{
+    NvmeNamespace *ns;
+    int i;
+
+    if (n->pmr.dev) {
+        memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
+    }
+
+    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+        ns = nvme_ns(n, i);
+        if (!ns) {
+            continue;
+        }
+
+        nvme_ns_shutdown(ns);
+    }
+}
+
+static void nvme_select_iocs(NvmeCtrl *n)
+{
+    NvmeNamespace *ns;
+    int i;
+
+    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+        ns = nvme_ns(n, i);
+        if (!ns) {
+            continue;
+        }
+
+        nvme_select_iocs_ns(n, ns);
+    }
+}
+
+static int nvme_start_ctrl(NvmeCtrl *n)
+{
+    uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
+    uint32_t page_size = 1 << page_bits;
+
+    if (unlikely(n->cq[0])) {
+        trace_pci_nvme_err_startfail_cq();
+        return -1;
+    }
+    if (unlikely(n->sq[0])) {
+        trace_pci_nvme_err_startfail_sq();
+        return -1;
+    }
+    if (unlikely(!n->bar.asq)) {
+        trace_pci_nvme_err_startfail_nbarasq();
+        return -1;
+    }
+    if (unlikely(!n->bar.acq)) {
+        trace_pci_nvme_err_startfail_nbaracq();
+        return -1;
+    }
+    if (unlikely(n->bar.asq & (page_size - 1))) {
+        trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
+        return -1;
+    }
+    if (unlikely(n->bar.acq & (page_size - 1))) {
+        trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
+        return -1;
+    }
+    if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) {
+        trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc));
+        return -1;
+    }
+    if (unlikely(NVME_CC_MPS(n->bar.cc) <
+                 NVME_CAP_MPSMIN(n->bar.cap))) {
+        trace_pci_nvme_err_startfail_page_too_small(
+                    NVME_CC_MPS(n->bar.cc),
+                    NVME_CAP_MPSMIN(n->bar.cap));
+        return -1;
+    }
+    if (unlikely(NVME_CC_MPS(n->bar.cc) >
+                 NVME_CAP_MPSMAX(n->bar.cap))) {
+        trace_pci_nvme_err_startfail_page_too_large(
+                    NVME_CC_MPS(n->bar.cc),
+                    NVME_CAP_MPSMAX(n->bar.cap));
+        return -1;
+    }
+    if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
+                 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
+        trace_pci_nvme_err_startfail_cqent_too_small(
+                    NVME_CC_IOCQES(n->bar.cc),
+                    NVME_CTRL_CQES_MIN(n->bar.cap));
+        return -1;
+    }
+    if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
+                 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
+        trace_pci_nvme_err_startfail_cqent_too_large(
+                    NVME_CC_IOCQES(n->bar.cc),
+                    NVME_CTRL_CQES_MAX(n->bar.cap));
+        return -1;
+    }
+    if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
+                 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
+        trace_pci_nvme_err_startfail_sqent_too_small(
+                    NVME_CC_IOSQES(n->bar.cc),
+                    NVME_CTRL_SQES_MIN(n->bar.cap));
+        return -1;
+    }
+    if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
+                 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
+        trace_pci_nvme_err_startfail_sqent_too_large(
+                    NVME_CC_IOSQES(n->bar.cc),
+                    NVME_CTRL_SQES_MAX(n->bar.cap));
+        return -1;
+    }
+    if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
+        trace_pci_nvme_err_startfail_asqent_sz_zero();
+        return -1;
+    }
+    if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
+        trace_pci_nvme_err_startfail_acqent_sz_zero();
+        return -1;
+    }
+
+    n->page_bits = page_bits;
+    n->page_size = page_size;
+    n->max_prp_ents = n->page_size / sizeof(uint64_t);
+    n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
+    n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
+    nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
+                 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
+    nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
+                 NVME_AQA_ASQS(n->bar.aqa) + 1);
+
+    nvme_set_timestamp(n, 0ULL);
+
+    QTAILQ_INIT(&n->aer_queue);
+
+    nvme_select_iocs(n);
+
+    return 0;
+}
+
+static void nvme_cmb_enable_regs(NvmeCtrl *n)
+{
+    NVME_CMBLOC_SET_CDPCILS(n->bar.cmbloc, 1);
+    NVME_CMBLOC_SET_CDPMLS(n->bar.cmbloc, 1);
+    NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
+
+    NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
+    NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
+    NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
+    NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
+    NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
+    NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
+    NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
+}
+
+static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
+                           unsigned size)
+{
+    if (unlikely(offset & (sizeof(uint32_t) - 1))) {
+        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
+                       "MMIO write not 32-bit aligned,"
+                       " offset=0x%"PRIx64"", offset);
+        /* should be ignored, fall through for now */
+    }
+
+    if (unlikely(size < sizeof(uint32_t))) {
+        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
+                       "MMIO write smaller than 32-bits,"
+                       " offset=0x%"PRIx64", size=%u",
+                       offset, size);
+        /* should be ignored, fall through for now */
+    }
+
+    switch (offset) {
+    case 0xc:   /* INTMS */
+        if (unlikely(msix_enabled(&(n->parent_obj)))) {
+            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
+                           "undefined access to interrupt mask set"
+                           " when MSI-X is enabled");
+            /* should be ignored, fall through for now */
+        }
+        n->bar.intms |= data & 0xffffffff;
+        n->bar.intmc = n->bar.intms;
+        trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
+        nvme_irq_check(n);
+        break;
+    case 0x10:  /* INTMC */
+        if (unlikely(msix_enabled(&(n->parent_obj)))) {
+            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
+                           "undefined access to interrupt mask clr"
+                           " when MSI-X is enabled");
+            /* should be ignored, fall through for now */
+        }
+        n->bar.intms &= ~(data & 0xffffffff);
+        n->bar.intmc = n->bar.intms;
+        trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
+        nvme_irq_check(n);
+        break;
+    case 0x14:  /* CC */
+        trace_pci_nvme_mmio_cfg(data & 0xffffffff);
+        /* Windows first sends data, then sends enable bit */
+        if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
+            !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
+        {
+            n->bar.cc = data;
+        }
+
+        if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
+            n->bar.cc = data;
+            if (unlikely(nvme_start_ctrl(n))) {
+                trace_pci_nvme_err_startfail();
+                n->bar.csts = NVME_CSTS_FAILED;
+            } else {
+                trace_pci_nvme_mmio_start_success();
+                n->bar.csts = NVME_CSTS_READY;
+            }
+        } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
+            trace_pci_nvme_mmio_stopped();
+            nvme_ctrl_reset(n);
+            n->bar.csts &= ~NVME_CSTS_READY;
+        }
+        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
+            trace_pci_nvme_mmio_shutdown_set();
+            nvme_ctrl_shutdown(n);
+            n->bar.cc = data;
+            n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
+        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
+            trace_pci_nvme_mmio_shutdown_cleared();
+            n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
+            n->bar.cc = data;
+        }
+        break;
+    case 0x1c:  /* CSTS */
+        if (data & (1 << 4)) {
+            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
+                           "attempted to W1C CSTS.NSSRO"
+                           " but CAP.NSSRS is zero (not supported)");
+        } else if (data != 0) {
+            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
+                           "attempted to set a read only bit"
+                           " of controller status");
+        }
+        break;
+    case 0x20:  /* NSSR */
+        if (data == 0x4e564d65) {
+            trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
+        } else {
+            /* The spec says that writes of other values have no effect */
+            return;
+        }
+        break;
+    case 0x24:  /* AQA */
+        n->bar.aqa = data & 0xffffffff;
+        trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
+        break;
+    case 0x28:  /* ASQ */
+        n->bar.asq = size == 8 ? data :
+            (n->bar.asq & ~0xffffffffULL) | (data & 0xffffffff);
+        trace_pci_nvme_mmio_asqaddr(data);
+        break;
+    case 0x2c:  /* ASQ hi */
+        n->bar.asq = (n->bar.asq & 0xffffffff) | (data << 32);
+        trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
+        break;
+    case 0x30:  /* ACQ */
+        trace_pci_nvme_mmio_acqaddr(data);
+        n->bar.acq = size == 8 ? data :
+            (n->bar.acq & ~0xffffffffULL) | (data & 0xffffffff);
+        break;
+    case 0x34:  /* ACQ hi */
+        n->bar.acq = (n->bar.acq & 0xffffffff) | (data << 32);
+        trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
+        break;
+    case 0x38:  /* CMBLOC */
+        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
+                       "invalid write to reserved CMBLOC"
+                       " when CMBSZ is zero, ignored");
+        return;
+    case 0x3C:  /* CMBSZ */
+        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
+                       "invalid write to read only CMBSZ, ignored");
+        return;
+    case 0x50:  /* CMBMSC */
+        if (!NVME_CAP_CMBS(n->bar.cap)) {
+            return;
+        }
+
+        n->bar.cmbmsc = size == 8 ? data :
+            (n->bar.cmbmsc & ~0xffffffff) | (data & 0xffffffff);
+        n->cmb.cmse = false;
+
+        if (NVME_CMBMSC_CRE(data)) {
+            nvme_cmb_enable_regs(n);
+
+            if (NVME_CMBMSC_CMSE(data)) {
+                hwaddr cba = NVME_CMBMSC_CBA(data) << CMBMSC_CBA_SHIFT;
+                if (cba + int128_get64(n->cmb.mem.size) < cba) {
+                    NVME_CMBSTS_SET_CBAI(n->bar.cmbsts, 1);
+                    return;
+                }
+
+                n->cmb.cba = cba;
+                n->cmb.cmse = true;
+            }
+        } else {
+            n->bar.cmbsz = 0;
+            n->bar.cmbloc = 0;
+        }
+
+        return;
+    case 0x54:  /* CMBMSC hi */
+        n->bar.cmbmsc = (n->bar.cmbmsc & 0xffffffff) | (data << 32);
+        return;
+
+    case 0xe00: /* PMRCAP */
+        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
+                       "invalid write to PMRCAP register, ignored");
+        return;
+    case 0xe04: /* PMRCTL */
+        n->bar.pmrctl = data;
+        if (NVME_PMRCTL_EN(data)) {
+            memory_region_set_enabled(&n->pmr.dev->mr, true);
+            n->bar.pmrsts = 0;
+        } else {
+            memory_region_set_enabled(&n->pmr.dev->mr, false);
+            NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 1);
+            n->pmr.cmse = false;
+        }
+        return;
+    case 0xe08: /* PMRSTS */
+        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
+                       "invalid write to PMRSTS register, ignored");
+        return;
+    case 0xe0C: /* PMREBS */
+        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
+                       "invalid write to PMREBS register, ignored");
+        return;
+    case 0xe10: /* PMRSWTP */
+        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
+                       "invalid write to PMRSWTP register, ignored");
+        return;
+    case 0xe14: /* PMRMSCL */
+        if (!NVME_CAP_PMRS(n->bar.cap)) {
+            return;
+        }
+
+        n->bar.pmrmsc = (n->bar.pmrmsc & ~0xffffffff) | (data & 0xffffffff);
+        n->pmr.cmse = false;
+
+        if (NVME_PMRMSC_CMSE(n->bar.pmrmsc)) {
+            hwaddr cba = NVME_PMRMSC_CBA(n->bar.pmrmsc) << PMRMSC_CBA_SHIFT;
+            if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
+                NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 1);
+                return;
+            }
+
+            n->pmr.cmse = true;
+            n->pmr.cba = cba;
+        }
+
+        return;
+    case 0xe18: /* PMRMSCU */
+        if (!NVME_CAP_PMRS(n->bar.cap)) {
+            return;
+        }
+
+        n->bar.pmrmsc = (n->bar.pmrmsc & 0xffffffff) | (data << 32);
+        return;
+    default:
+        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
+                       "invalid MMIO write,"
+                       " offset=0x%"PRIx64", data=%"PRIx64"",
+                       offset, data);
+        break;
+    }
+}
+
+static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
+{
+    NvmeCtrl *n = (NvmeCtrl *)opaque;
+    uint8_t *ptr = (uint8_t *)&n->bar;
+    uint64_t val = 0;
+
+    trace_pci_nvme_mmio_read(addr, size);
+
+    if (unlikely(addr & (sizeof(uint32_t) - 1))) {
+        NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
+                       "MMIO read not 32-bit aligned,"
+                       " offset=0x%"PRIx64"", addr);
+        /* should RAZ, fall through for now */
+    } else if (unlikely(size < sizeof(uint32_t))) {
+        NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
+                       "MMIO read smaller than 32-bits,"
+                       " offset=0x%"PRIx64"", addr);
+        /* should RAZ, fall through for now */
+    }
+
+    if (addr < sizeof(n->bar)) {
+        /*
+         * When PMRWBM bit 1 is set then read from
+         * from PMRSTS should ensure prior writes
+         * made it to persistent media
+         */
+        if (addr == 0xe08 &&
+            (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
+            memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
+        }
+        memcpy(&val, ptr + addr, size);
+    } else {
+        NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
+                       "MMIO read beyond last register,"
+                       " offset=0x%"PRIx64", returning 0", addr);
+    }
+
+    return val;
+}
+
+static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
+{
+    uint32_t qid;
+
+    if (unlikely(addr & ((1 << 2) - 1))) {
+        NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
+                       "doorbell write not 32-bit aligned,"
+                       " offset=0x%"PRIx64", ignoring", addr);
+        return;
+    }
+
+    if (((addr - 0x1000) >> 2) & 1) {
+        /* Completion queue doorbell write */
+
+        uint16_t new_head = val & 0xffff;
+        int start_sqs;
+        NvmeCQueue *cq;
+
+        qid = (addr - (0x1000 + (1 << 2))) >> 3;
+        if (unlikely(nvme_check_cqid(n, qid))) {
+            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
+                           "completion queue doorbell write"
+                           " for nonexistent queue,"
+                           " sqid=%"PRIu32", ignoring", qid);
+
+            /*
+             * NVM Express v1.3d, Section 4.1 state: "If host software writes
+             * an invalid value to the Submission Queue Tail Doorbell or
+             * Completion Queue Head Doorbell regiter and an Asynchronous Event
+             * Request command is outstanding, then an asynchronous event is
+             * posted to the Admin Completion Queue with a status code of
+             * Invalid Doorbell Write Value."
+             *
+             * Also note that the spec includes the "Invalid Doorbell Register"
+             * status code, but nowhere does it specify when to use it.
+             * However, it seems reasonable to use it here in a similar
+             * fashion.
+             */
+            if (n->outstanding_aers) {
+                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
+                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
+                                   NVME_LOG_ERROR_INFO);
+            }
+
+            return;
+        }
+
+        cq = n->cq[qid];
+        if (unlikely(new_head >= cq->size)) {
+            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
+                           "completion queue doorbell write value"
+                           " beyond queue size, sqid=%"PRIu32","
+                           " new_head=%"PRIu16", ignoring",
+                           qid, new_head);
+
+            if (n->outstanding_aers) {
+                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
+                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
+                                   NVME_LOG_ERROR_INFO);
+            }
+
+            return;
+        }
+
+        trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
+
+        start_sqs = nvme_cq_full(cq) ? 1 : 0;
+        cq->head = new_head;
+        if (start_sqs) {
+            NvmeSQueue *sq;
+            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
+                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
+            }
+            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
+        }
+
+        if (cq->tail == cq->head) {
+            nvme_irq_deassert(n, cq);
+        }
+    } else {
+        /* Submission queue doorbell write */
+
+        uint16_t new_tail = val & 0xffff;
+        NvmeSQueue *sq;
+
+        qid = (addr - 0x1000) >> 3;
+        if (unlikely(nvme_check_sqid(n, qid))) {
+            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
+                           "submission queue doorbell write"
+                           " for nonexistent queue,"
+                           " sqid=%"PRIu32", ignoring", qid);
+
+            if (n->outstanding_aers) {
+                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
+                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
+                                   NVME_LOG_ERROR_INFO);
+            }
+
+            return;
+        }
+
+        sq = n->sq[qid];
+        if (unlikely(new_tail >= sq->size)) {
+            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
+                           "submission queue doorbell write value"
+                           " beyond queue size, sqid=%"PRIu32","
+                           " new_tail=%"PRIu16", ignoring",
+                           qid, new_tail);
+
+            if (n->outstanding_aers) {
+                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
+                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
+                                   NVME_LOG_ERROR_INFO);
+            }
+
+            return;
+        }
+
+        trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
+
+        sq->tail = new_tail;
+        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
+    }
+}
+
+static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
+                            unsigned size)
+{
+    NvmeCtrl *n = (NvmeCtrl *)opaque;
+
+    trace_pci_nvme_mmio_write(addr, data, size);
+
+    if (addr < sizeof(n->bar)) {
+        nvme_write_bar(n, addr, data, size);
+    } else {
+        nvme_process_db(n, addr, data);
+    }
+}
+
+static const MemoryRegionOps nvme_mmio_ops = {
+    .read = nvme_mmio_read,
+    .write = nvme_mmio_write,
+    .endianness = DEVICE_LITTLE_ENDIAN,
+    .impl = {
+        .min_access_size = 2,
+        .max_access_size = 8,
+    },
+};
+
+static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
+                           unsigned size)
+{
+    NvmeCtrl *n = (NvmeCtrl *)opaque;
+    stn_le_p(&n->cmb.buf[addr], size, data);
+}
+
+static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
+{
+    NvmeCtrl *n = (NvmeCtrl *)opaque;
+    return ldn_le_p(&n->cmb.buf[addr], size);
+}
+
+static const MemoryRegionOps nvme_cmb_ops = {
+    .read = nvme_cmb_read,
+    .write = nvme_cmb_write,
+    .endianness = DEVICE_LITTLE_ENDIAN,
+    .impl = {
+        .min_access_size = 1,
+        .max_access_size = 8,
+    },
+};
+
+static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
+{
+    NvmeParams *params = &n->params;
+
+    if (params->num_queues) {
+        warn_report("num_queues is deprecated; please use max_ioqpairs "
+                    "instead");
+
+        params->max_ioqpairs = params->num_queues - 1;
+    }
+
+    if (n->namespace.blkconf.blk && n->subsys) {
+        error_setg(errp, "subsystem support is unavailable with legacy "
+                   "namespace ('drive' property)");
+        return;
+    }
+
+    if (params->max_ioqpairs < 1 ||
+        params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
+        error_setg(errp, "max_ioqpairs must be between 1 and %d",
+                   NVME_MAX_IOQPAIRS);
+        return;
+    }
+
+    if (params->msix_qsize < 1 ||
+        params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
+        error_setg(errp, "msix_qsize must be between 1 and %d",
+                   PCI_MSIX_FLAGS_QSIZE + 1);
+        return;
+    }
+
+    if (!params->serial) {
+        error_setg(errp, "serial property not set");
+        return;
+    }
+
+    if (n->pmr.dev) {
+        if (host_memory_backend_is_mapped(n->pmr.dev)) {
+            error_setg(errp, "can't use already busy memdev: %s",
+                       object_get_canonical_path_component(OBJECT(n->pmr.dev)));
+            return;
+        }
+
+        if (!is_power_of_2(n->pmr.dev->size)) {
+            error_setg(errp, "pmr backend size needs to be power of 2 in size");
+            return;
+        }
+
+        host_memory_backend_set_mapped(n->pmr.dev, true);
+    }
+
+    if (n->params.zasl > n->params.mdts) {
+        error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
+                   "than or equal to mdts (Maximum Data Transfer Size)");
+        return;
+    }
+
+    if (!n->params.vsl) {
+        error_setg(errp, "vsl must be non-zero");
+        return;
+    }
+}
+
+static void nvme_init_state(NvmeCtrl *n)
+{
+    /* add one to max_ioqpairs to account for the admin queue pair */
+    n->reg_size = pow2ceil(sizeof(NvmeBar) +
+                           2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
+    n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
+    n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
+    n->temperature = NVME_TEMPERATURE;
+    n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
+    n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
+    n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
+}
+
+static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
+{
+    uint64_t cmb_size = n->params.cmb_size_mb * MiB;
+
+    n->cmb.buf = g_malloc0(cmb_size);
+    memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
+                          "nvme-cmb", cmb_size);
+    pci_register_bar(pci_dev, NVME_CMB_BIR,
+                     PCI_BASE_ADDRESS_SPACE_MEMORY |
+                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
+                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
+
+    NVME_CAP_SET_CMBS(n->bar.cap, 1);
+
+    if (n->params.legacy_cmb) {
+        nvme_cmb_enable_regs(n);
+        n->cmb.cmse = true;
+    }
+}
+
+static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
+{
+    NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 1);
+    NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 1);
+    NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
+    /* Turn on bit 1 support */
+    NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
+    NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 1);
+
+    pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
+                     PCI_BASE_ADDRESS_SPACE_MEMORY |
+                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
+                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
+
+    memory_region_set_enabled(&n->pmr.dev->mr, false);
+}
+
+static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
+{
+    uint8_t *pci_conf = pci_dev->config;
+    uint64_t bar_size, msix_table_size, msix_pba_size;
+    unsigned msix_table_offset, msix_pba_offset;
+    int ret;
+
+    Error *err = NULL;
+
+    pci_conf[PCI_INTERRUPT_PIN] = 1;
+    pci_config_set_prog_interface(pci_conf, 0x2);
+
+    if (n->params.use_intel_id) {
+        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
+        pci_config_set_device_id(pci_conf, 0x5845);
+    } else {
+        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
+        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
+    }
+
+    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
+    pcie_endpoint_cap_init(pci_dev, 0x80);
+
+    bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB);
+    msix_table_offset = bar_size;
+    msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize;
+
+    bar_size += msix_table_size;
+    bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
+    msix_pba_offset = bar_size;
+    msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8;
+
+    bar_size += msix_pba_size;
+    bar_size = pow2ceil(bar_size);
+
+    memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
+    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
+                          n->reg_size);
+    memory_region_add_subregion(&n->bar0, 0, &n->iomem);
+
+    pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
+                     PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
+    ret = msix_init(pci_dev, n->params.msix_qsize,
+                    &n->bar0, 0, msix_table_offset,
+                    &n->bar0, 0, msix_pba_offset, 0, &err);
+    if (ret < 0) {
+        if (ret == -ENOTSUP) {
+            warn_report_err(err);
+        } else {
+            error_propagate(errp, err);
+            return ret;
+        }
+    }
+
+    if (n->params.cmb_size_mb) {
+        nvme_init_cmb(n, pci_dev);
+    }
+
+    if (n->pmr.dev) {
+        nvme_init_pmr(n, pci_dev);
+    }
+
+    return 0;
+}
+
+static void nvme_init_subnqn(NvmeCtrl *n)
+{
+    NvmeSubsystem *subsys = n->subsys;
+    NvmeIdCtrl *id = &n->id_ctrl;
+
+    if (!subsys) {
+        snprintf((char *)id->subnqn, sizeof(id->subnqn),
+                 "nqn.2019-08.org.qemu:%s", n->params.serial);
+    } else {
+        pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
+    }
+}
+
+static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
+{
+    NvmeIdCtrl *id = &n->id_ctrl;
+    uint8_t *pci_conf = pci_dev->config;
+
+    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
+    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
+    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
+    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
+    strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
+
+    id->cntlid = cpu_to_le16(n->cntlid);
+
+    id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
+
+    id->rab = 6;
+
+    if (n->params.use_intel_id) {
+        id->ieee[0] = 0xb3;
+        id->ieee[1] = 0x02;
+        id->ieee[2] = 0x00;
+    } else {
+        id->ieee[0] = 0x00;
+        id->ieee[1] = 0x54;
+        id->ieee[2] = 0x52;
+    }
+
+    id->mdts = n->params.mdts;
+    id->ver = cpu_to_le32(NVME_SPEC_VER);
+    id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT);
+    id->cntrltype = 0x1;
+
+    /*
+     * Because the controller always completes the Abort command immediately,
+     * there can never be more than one concurrently executing Abort command,
+     * so this value is never used for anything. Note that there can easily be
+     * many Abort commands in the queues, but they are not considered
+     * "executing" until processed by nvme_abort.
+     *
+     * The specification recommends a value of 3 for Abort Command Limit (four
+     * concurrently outstanding Abort commands), so lets use that though it is
+     * inconsequential.
+     */
+    id->acl = 3;
+    id->aerl = n->params.aerl;
+    id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
+    id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
+
+    /* recommended default value (~70 C) */
+    id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
+    id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
+
+    id->sqes = (0x6 << 4) | 0x6;
+    id->cqes = (0x4 << 4) | 0x4;
+    id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
+    id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
+                           NVME_ONCS_FEATURES | NVME_ONCS_DSM |
+                           NVME_ONCS_COMPARE | NVME_ONCS_COPY);
+
+    /*
+     * NOTE: If this device ever supports a command set that does NOT use 0x0
+     * as a Flush-equivalent operation, support for the broadcast NSID in Flush
+     * should probably be removed.
+     *
+     * See comment in nvme_io_cmd.
+     */
+    id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
+
+    id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0);
+    id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
+                           NVME_CTRL_SGLS_BITBUCKET);
+
+    nvme_init_subnqn(n);
+
+    id->psd[0].mp = cpu_to_le16(0x9c4);
+    id->psd[0].enlat = cpu_to_le32(0x10);
+    id->psd[0].exlat = cpu_to_le32(0x4);
+
+    if (n->subsys) {
+        id->cmic |= NVME_CMIC_MULTI_CTRL;
+    }
+
+    NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
+    NVME_CAP_SET_CQR(n->bar.cap, 1);
+    NVME_CAP_SET_TO(n->bar.cap, 0xf);
+    NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM);
+    NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_CSI_SUPP);
+    NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY);
+    NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
+    NVME_CAP_SET_CMBS(n->bar.cap, n->params.cmb_size_mb ? 1 : 0);
+    NVME_CAP_SET_PMRS(n->bar.cap, n->pmr.dev ? 1 : 0);
+
+    n->bar.vs = NVME_SPEC_VER;
+    n->bar.intmc = n->bar.intms = 0;
+}
+
+static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
+{
+    int cntlid;
+
+    if (!n->subsys) {
+        return 0;
+    }
+
+    cntlid = nvme_subsys_register_ctrl(n, errp);
+    if (cntlid < 0) {
+        return -1;
+    }
+
+    n->cntlid = cntlid;
+
+    return 0;
+}
+
+void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
+{
+    uint32_t nsid = ns->params.nsid;
+    assert(nsid && nsid <= NVME_MAX_NAMESPACES);
+
+    n->namespaces[nsid] = ns;
+    ns->attached++;
+
+    n->dmrsl = MIN_NON_ZERO(n->dmrsl,
+                            BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
+}
+
+static void nvme_realize(PCIDevice *pci_dev, Error **errp)
+{
+    NvmeCtrl *n = NVME(pci_dev);
+    NvmeNamespace *ns;
+    Error *local_err = NULL;
+
+    nvme_check_constraints(n, &local_err);
+    if (local_err) {
+        error_propagate(errp, local_err);
+        return;
+    }
+
+    qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
+                        &pci_dev->qdev, n->parent_obj.qdev.id);
+
+    nvme_init_state(n);
+    if (nvme_init_pci(n, pci_dev, errp)) {
+        return;
+    }
+
+    if (nvme_init_subsys(n, errp)) {
+        error_propagate(errp, local_err);
+        return;
+    }
+    nvme_init_ctrl(n, pci_dev);
+
+    /* setup a namespace if the controller drive property was given */
+    if (n->namespace.blkconf.blk) {
+        ns = &n->namespace;
+        ns->params.nsid = 1;
+
+        if (nvme_ns_setup(n, ns, errp)) {
+            return;
+        }
+
+        nvme_attach_ns(n, ns);
+    }
+}
+
+static void nvme_exit(PCIDevice *pci_dev)
+{
+    NvmeCtrl *n = NVME(pci_dev);
+    NvmeNamespace *ns;
+    int i;
+
+    nvme_ctrl_reset(n);
+
+    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
+        ns = nvme_ns(n, i);
+        if (!ns) {
+            continue;
+        }
+
+        nvme_ns_cleanup(ns);
+    }
+
+    g_free(n->cq);
+    g_free(n->sq);
+    g_free(n->aer_reqs);
+
+    if (n->params.cmb_size_mb) {
+        g_free(n->cmb.buf);
+    }
+
+    if (n->pmr.dev) {
+        host_memory_backend_set_mapped(n->pmr.dev, false);
+    }
+    msix_uninit(pci_dev, &n->bar0, &n->bar0);
+    memory_region_del_subregion(&n->bar0, &n->iomem);
+}
+
+static Property nvme_props[] = {
+    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
+    DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
+                     HostMemoryBackend *),
+    DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
+                     NvmeSubsystem *),
+    DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
+    DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
+    DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
+    DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
+    DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
+    DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
+    DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
+    DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
+    DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
+    DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
+    DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
+    DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
+    DEFINE_PROP_END_OF_LIST(),
+};
+
+static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
+                                   void *opaque, Error **errp)
+{
+    NvmeCtrl *n = NVME(obj);
+    uint8_t value = n->smart_critical_warning;
+
+    visit_type_uint8(v, name, &value, errp);
+}
+
+static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
+                                   void *opaque, Error **errp)
+{
+    NvmeCtrl *n = NVME(obj);
+    uint8_t value, old_value, cap = 0, index, event;
+
+    if (!visit_type_uint8(v, name, &value, errp)) {
+        return;
+    }
+
+    cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
+          | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
+    if (NVME_CAP_PMRS(n->bar.cap)) {
+        cap |= NVME_SMART_PMR_UNRELIABLE;
+    }
+
+    if ((value & cap) != value) {
+        error_setg(errp, "unsupported smart critical warning bits: 0x%x",
+                   value & ~cap);
+        return;
+    }
+
+    old_value = n->smart_critical_warning;
+    n->smart_critical_warning = value;
+
+    /* only inject new bits of smart critical warning */
+    for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
+        event = 1 << index;
+        if (value & ~old_value & event)
+            nvme_smart_event(n, event);
+    }
+}
+
+static const VMStateDescription nvme_vmstate = {
+    .name = "nvme",
+    .unmigratable = 1,
+};
+
+static void nvme_class_init(ObjectClass *oc, void *data)
+{
+    DeviceClass *dc = DEVICE_CLASS(oc);
+    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
+
+    pc->realize = nvme_realize;
+    pc->exit = nvme_exit;
+    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
+    pc->revision = 2;
+
+    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
+    dc->desc = "Non-Volatile Memory Express";
+    device_class_set_props(dc, nvme_props);
+    dc->vmsd = &nvme_vmstate;
+}
+
+static void nvme_instance_init(Object *obj)
+{
+    NvmeCtrl *n = NVME(obj);
+
+    device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
+                                  "bootindex", "/namespace@1,0",
+                                  DEVICE(obj));
+
+    object_property_add(obj, "smart_critical_warning", "uint8",
+                        nvme_get_smart_warning,
+                        nvme_set_smart_warning, NULL, NULL);
+}
+
+static const TypeInfo nvme_info = {
+    .name          = TYPE_NVME,
+    .parent        = TYPE_PCI_DEVICE,
+    .instance_size = sizeof(NvmeCtrl),
+    .instance_init = nvme_instance_init,
+    .class_init    = nvme_class_init,
+    .interfaces = (InterfaceInfo[]) {
+        { INTERFACE_PCIE_DEVICE },
+        { }
+    },
+};
+
+static const TypeInfo nvme_bus_info = {
+    .name = TYPE_NVME_BUS,
+    .parent = TYPE_BUS,
+    .instance_size = sizeof(NvmeBus),
+};
+
+static void nvme_register_types(void)
+{
+    type_register_static(&nvme_info);
+    type_register_static(&nvme_bus_info);
+}
+
+type_init(nvme_register_types)