summary refs log tree commit diff stats
diff options
context:
space:
mode:
-rw-r--r--target/arm/helper.c130
1 files changed, 79 insertions, 51 deletions
diff --git a/target/arm/helper.c b/target/arm/helper.c
index 70cf313260..9e7eaa1080 100644
--- a/target/arm/helper.c
+++ b/target/arm/helper.c
@@ -9348,67 +9348,28 @@ static void v8m_security_lookup(CPUARMState *env, uint32_t address,
     }
 }
 
-static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
-                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
-                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
-                                 int *prot, uint32_t *fsr)
+static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
+                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
+                              hwaddr *phys_ptr, MemTxAttrs *txattrs,
+                              int *prot, uint32_t *fsr, uint32_t *mregion)
 {
+    /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
+     * that a full phys-to-virt translation does).
+     * mregion is (if not NULL) set to the region number which matched,
+     * or -1 if no region number is returned (MPU off, address did not
+     * hit a region, address hit in multiple regions).
+     */
     ARMCPU *cpu = arm_env_get_cpu(env);
     bool is_user = regime_is_user(env, mmu_idx);
     uint32_t secure = regime_is_secure(env, mmu_idx);
     int n;
     int matchregion = -1;
     bool hit = false;
-    V8M_SAttributes sattrs = {};
 
     *phys_ptr = address;
     *prot = 0;
-
-    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
-        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
-        if (access_type == MMU_INST_FETCH) {
-            /* Instruction fetches always use the MMU bank and the
-             * transaction attribute determined by the fetch address,
-             * regardless of CPU state. This is painful for QEMU
-             * to handle, because it would mean we need to encode
-             * into the mmu_idx not just the (user, negpri) information
-             * for the current security state but also that for the
-             * other security state, which would balloon the number
-             * of mmu_idx values needed alarmingly.
-             * Fortunately we can avoid this because it's not actually
-             * possible to arbitrarily execute code from memory with
-             * the wrong security attribute: it will always generate
-             * an exception of some kind or another, apart from the
-             * special case of an NS CPU executing an SG instruction
-             * in S&NSC memory. So we always just fail the translation
-             * here and sort things out in the exception handler
-             * (including possibly emulating an SG instruction).
-             */
-            if (sattrs.ns != !secure) {
-                *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT;
-                return true;
-            }
-        } else {
-            /* For data accesses we always use the MMU bank indicated
-             * by the current CPU state, but the security attributes
-             * might downgrade a secure access to nonsecure.
-             */
-            if (sattrs.ns) {
-                txattrs->secure = false;
-            } else if (!secure) {
-                /* NS access to S memory must fault.
-                 * Architecturally we should first check whether the
-                 * MPU information for this address indicates that we
-                 * are doing an unaligned access to Device memory, which
-                 * should generate a UsageFault instead. QEMU does not
-                 * currently check for that kind of unaligned access though.
-                 * If we added it we would need to do so as a special case
-                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
-                 */
-                *fsr = M_FAKE_FSR_SFAULT;
-                return true;
-            }
-        }
+    if (mregion) {
+        *mregion = -1;
     }
 
     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
@@ -9497,12 +9458,79 @@ static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
         /* We don't need to look the attribute up in the MAIR0/MAIR1
          * registers because that only tells us about cacheability.
          */
+        if (mregion) {
+            *mregion = matchregion;
+        }
     }
 
     *fsr = 0x00d; /* Permission fault */
     return !(*prot & (1 << access_type));
 }
 
+
+static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
+                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
+                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
+                                 int *prot, uint32_t *fsr)
+{
+    uint32_t secure = regime_is_secure(env, mmu_idx);
+    V8M_SAttributes sattrs = {};
+
+    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
+        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
+        if (access_type == MMU_INST_FETCH) {
+            /* Instruction fetches always use the MMU bank and the
+             * transaction attribute determined by the fetch address,
+             * regardless of CPU state. This is painful for QEMU
+             * to handle, because it would mean we need to encode
+             * into the mmu_idx not just the (user, negpri) information
+             * for the current security state but also that for the
+             * other security state, which would balloon the number
+             * of mmu_idx values needed alarmingly.
+             * Fortunately we can avoid this because it's not actually
+             * possible to arbitrarily execute code from memory with
+             * the wrong security attribute: it will always generate
+             * an exception of some kind or another, apart from the
+             * special case of an NS CPU executing an SG instruction
+             * in S&NSC memory. So we always just fail the translation
+             * here and sort things out in the exception handler
+             * (including possibly emulating an SG instruction).
+             */
+            if (sattrs.ns != !secure) {
+                *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT;
+                *phys_ptr = address;
+                *prot = 0;
+                return true;
+            }
+        } else {
+            /* For data accesses we always use the MMU bank indicated
+             * by the current CPU state, but the security attributes
+             * might downgrade a secure access to nonsecure.
+             */
+            if (sattrs.ns) {
+                txattrs->secure = false;
+            } else if (!secure) {
+                /* NS access to S memory must fault.
+                 * Architecturally we should first check whether the
+                 * MPU information for this address indicates that we
+                 * are doing an unaligned access to Device memory, which
+                 * should generate a UsageFault instead. QEMU does not
+                 * currently check for that kind of unaligned access though.
+                 * If we added it we would need to do so as a special case
+                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
+                 */
+                *fsr = M_FAKE_FSR_SFAULT;
+                *phys_ptr = address;
+                *prot = 0;
+                return true;
+            }
+        }
+    }
+
+    return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
+                             txattrs, prot, fsr, NULL);
+}
+
 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)