summary refs log tree commit diff stats
diff options
context:
space:
mode:
-rw-r--r--fpu/softfloat-specialize.c.inc165
-rw-r--r--include/fpu/softfloat-helpers.h11
-rw-r--r--include/fpu/softfloat-types.h55
3 files changed, 106 insertions, 125 deletions
diff --git a/fpu/softfloat-specialize.c.inc b/fpu/softfloat-specialize.c.inc
index a769c71f54..b4f3f0efa8 100644
--- a/fpu/softfloat-specialize.c.inc
+++ b/fpu/softfloat-specialize.c.inc
@@ -475,6 +475,10 @@ static int pickNaN(FloatClass a_cls, FloatClass b_cls,
 static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
                          bool infzero, bool have_snan, float_status *status)
 {
+    FloatClass cls[3] = { a_cls, b_cls, c_cls };
+    Float3NaNPropRule rule = status->float_3nan_prop_rule;
+    int which;
+
     /*
      * We guarantee not to require the target to tell us how to
      * pick a NaN if we're always returning the default NaN.
@@ -500,145 +504,56 @@ static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
         }
     }
 
+    if (rule == float_3nan_prop_none) {
 #if defined(TARGET_ARM)
-
-    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
-     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
-     */
-    if (is_snan(c_cls)) {
-        return 2;
-    } else if (is_snan(a_cls)) {
-        return 0;
-    } else if (is_snan(b_cls)) {
-        return 1;
-    } else if (is_qnan(c_cls)) {
-        return 2;
-    } else if (is_qnan(a_cls)) {
-        return 0;
-    } else {
-        return 1;
-    }
+        /*
+         * This looks different from the ARM ARM pseudocode, because the ARM ARM
+         * puts the operands to a fused mac operation (a*b)+c in the order c,a,b
+         */
+        rule = float_3nan_prop_s_cab;
 #elif defined(TARGET_MIPS)
-    if (snan_bit_is_one(status)) {
-        /* Prefer sNaN over qNaN, in the a, b, c order. */
-        if (is_snan(a_cls)) {
-            return 0;
-        } else if (is_snan(b_cls)) {
-            return 1;
-        } else if (is_snan(c_cls)) {
-            return 2;
-        } else if (is_qnan(a_cls)) {
-            return 0;
-        } else if (is_qnan(b_cls)) {
-            return 1;
-        } else {
-            return 2;
-        }
-    } else {
-        /* Prefer sNaN over qNaN, in the c, a, b order. */
-        if (is_snan(c_cls)) {
-            return 2;
-        } else if (is_snan(a_cls)) {
-            return 0;
-        } else if (is_snan(b_cls)) {
-            return 1;
-        } else if (is_qnan(c_cls)) {
-            return 2;
-        } else if (is_qnan(a_cls)) {
-            return 0;
+        if (snan_bit_is_one(status)) {
+            rule = float_3nan_prop_s_abc;
         } else {
-            return 1;
+            rule = float_3nan_prop_s_cab;
         }
-    }
 #elif defined(TARGET_LOONGARCH64)
-    /* Prefer sNaN over qNaN, in the c, a, b order. */
-    if (is_snan(c_cls)) {
-        return 2;
-    } else if (is_snan(a_cls)) {
-        return 0;
-    } else if (is_snan(b_cls)) {
-        return 1;
-    } else if (is_qnan(c_cls)) {
-        return 2;
-    } else if (is_qnan(a_cls)) {
-        return 0;
-    } else {
-        return 1;
-    }
+        rule = float_3nan_prop_s_cab;
 #elif defined(TARGET_PPC)
-    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
-     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
-     */
-    if (is_nan(a_cls)) {
-        return 0;
-    } else if (is_nan(c_cls)) {
-        return 2;
-    } else {
-        return 1;
-    }
+        /*
+         * If fRA is a NaN return it; otherwise if fRB is a NaN return it;
+         * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
+         */
+        rule = float_3nan_prop_acb;
 #elif defined(TARGET_S390X)
-    if (is_snan(a_cls)) {
-        return 0;
-    } else if (is_snan(b_cls)) {
-        return 1;
-    } else if (is_snan(c_cls)) {
-        return 2;
-    } else if (is_qnan(a_cls)) {
-        return 0;
-    } else if (is_qnan(b_cls)) {
-        return 1;
-    } else {
-        return 2;
-    }
+        rule = float_3nan_prop_s_abc;
 #elif defined(TARGET_SPARC)
-    /* Prefer SNaN over QNaN, order C, B, A. */
-    if (is_snan(c_cls)) {
-        return 2;
-    } else if (is_snan(b_cls)) {
-        return 1;
-    } else if (is_snan(a_cls)) {
-        return 0;
-    } else if (is_qnan(c_cls)) {
-        return 2;
-    } else if (is_qnan(b_cls)) {
-        return 1;
-    } else {
-        return 0;
-    }
+        rule = float_3nan_prop_s_cba;
 #elif defined(TARGET_XTENSA)
-    /*
-     * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
-     * an input NaN if we have one (ie c).
-     */
-    if (status->use_first_nan) {
-        if (is_nan(a_cls)) {
-            return 0;
-        } else if (is_nan(b_cls)) {
-            return 1;
+        if (status->use_first_nan) {
+            rule = float_3nan_prop_abc;
         } else {
-            return 2;
+            rule = float_3nan_prop_cba;
         }
-    } else {
-        if (is_nan(c_cls)) {
-            return 2;
-        } else if (is_nan(b_cls)) {
-            return 1;
-        } else {
-            return 0;
-        }
-    }
 #else
-    /* A default implementation: prefer a to b to c.
-     * This is unlikely to actually match any real implementation.
-     */
-    if (is_nan(a_cls)) {
-        return 0;
-    } else if (is_nan(b_cls)) {
-        return 1;
+        rule = float_3nan_prop_abc;
+#endif
+    }
+
+    assert(rule != float_3nan_prop_none);
+    if (have_snan && (rule & R_3NAN_SNAN_MASK)) {
+        /* We have at least one SNaN input and should prefer it */
+        do {
+            which = rule & R_3NAN_1ST_MASK;
+            rule >>= R_3NAN_1ST_LENGTH;
+        } while (!is_snan(cls[which]));
     } else {
-        return 2;
+        do {
+            which = rule & R_3NAN_1ST_MASK;
+            rule >>= R_3NAN_1ST_LENGTH;
+        } while (!is_nan(cls[which]));
     }
-#endif
+    return which;
 }
 
 /*----------------------------------------------------------------------------
diff --git a/include/fpu/softfloat-helpers.h b/include/fpu/softfloat-helpers.h
index 0bf44dc608..cf06b4e16b 100644
--- a/include/fpu/softfloat-helpers.h
+++ b/include/fpu/softfloat-helpers.h
@@ -81,6 +81,12 @@ static inline void set_float_2nan_prop_rule(Float2NaNPropRule rule,
     status->float_2nan_prop_rule = rule;
 }
 
+static inline void set_float_3nan_prop_rule(Float3NaNPropRule rule,
+                                            float_status *status)
+{
+    status->float_3nan_prop_rule = rule;
+}
+
 static inline void set_float_infzeronan_rule(FloatInfZeroNaNRule rule,
                                              float_status *status)
 {
@@ -143,6 +149,11 @@ static inline Float2NaNPropRule get_float_2nan_prop_rule(float_status *status)
     return status->float_2nan_prop_rule;
 }
 
+static inline Float3NaNPropRule get_float_3nan_prop_rule(float_status *status)
+{
+    return status->float_3nan_prop_rule;
+}
+
 static inline FloatInfZeroNaNRule get_float_infzeronan_rule(float_status *status)
 {
     return status->float_infzeronan_rule;
diff --git a/include/fpu/softfloat-types.h b/include/fpu/softfloat-types.h
index 47bb22c4e2..d9f0797eda 100644
--- a/include/fpu/softfloat-types.h
+++ b/include/fpu/softfloat-types.h
@@ -80,6 +80,8 @@ this code that are retained.
 #ifndef SOFTFLOAT_TYPES_H
 #define SOFTFLOAT_TYPES_H
 
+#include "hw/registerfields.h"
+
 /*
  * Software IEC/IEEE floating-point types.
  */
@@ -208,6 +210,58 @@ typedef enum __attribute__((__packed__)) {
 } Float2NaNPropRule;
 
 /*
+ * 3-input NaN propagation rule, for fused multiply-add. Individual
+ * architectures have different rules for which input NaN is
+ * propagated to the output when there is more than one NaN on the
+ * input.
+ *
+ * If default_nan_mode is enabled then it is valid not to set a NaN
+ * propagation rule, because the softfloat code guarantees not to try
+ * to pick a NaN to propagate in default NaN mode.  When not in
+ * default-NaN mode, it is an error for the target not to set the rule
+ * in float_status if it uses a muladd, and we will assert if we need
+ * to handle an input NaN and no rule was selected.
+ *
+ * The naming scheme for Float3NaNPropRule values is:
+ *  float_3nan_prop_s_abc:
+ *    = "Prefer SNaN over QNaN, then operand A over B over C"
+ *  float_3nan_prop_abc:
+ *    = "Prefer A over B over C regardless of SNaN vs QNAN"
+ *
+ * For QEMU, the multiply-add operation is A * B + C.
+ */
+
+/*
+ * We set the Float3NaNPropRule enum values up so we can select the
+ * right value in pickNaNMulAdd in a data driven way.
+ */
+FIELD(3NAN, 1ST, 0, 2)   /* which operand is most preferred ? */
+FIELD(3NAN, 2ND, 2, 2)   /* which operand is next most preferred ? */
+FIELD(3NAN, 3RD, 4, 2)   /* which operand is least preferred ? */
+FIELD(3NAN, SNAN, 6, 1)  /* do we prefer SNaN over QNaN ? */
+
+#define PROPRULE(X, Y, Z) \
+    ((X << R_3NAN_1ST_SHIFT) | (Y << R_3NAN_2ND_SHIFT) | (Z << R_3NAN_3RD_SHIFT))
+
+typedef enum __attribute__((__packed__)) {
+    float_3nan_prop_none = 0,     /* No propagation rule specified */
+    float_3nan_prop_abc = PROPRULE(0, 1, 2),
+    float_3nan_prop_acb = PROPRULE(0, 2, 1),
+    float_3nan_prop_bac = PROPRULE(1, 0, 2),
+    float_3nan_prop_bca = PROPRULE(1, 2, 0),
+    float_3nan_prop_cab = PROPRULE(2, 0, 1),
+    float_3nan_prop_cba = PROPRULE(2, 1, 0),
+    float_3nan_prop_s_abc = float_3nan_prop_abc | R_3NAN_SNAN_MASK,
+    float_3nan_prop_s_acb = float_3nan_prop_acb | R_3NAN_SNAN_MASK,
+    float_3nan_prop_s_bac = float_3nan_prop_bac | R_3NAN_SNAN_MASK,
+    float_3nan_prop_s_bca = float_3nan_prop_bca | R_3NAN_SNAN_MASK,
+    float_3nan_prop_s_cab = float_3nan_prop_cab | R_3NAN_SNAN_MASK,
+    float_3nan_prop_s_cba = float_3nan_prop_cba | R_3NAN_SNAN_MASK,
+} Float3NaNPropRule;
+
+#undef PROPRULE
+
+/*
  * Rule for result of fused multiply-add 0 * Inf + NaN.
  * This must be a NaN, but implementations differ on whether this
  * is the input NaN or the default NaN.
@@ -241,6 +295,7 @@ typedef struct float_status {
     FloatRoundMode float_rounding_mode;
     FloatX80RoundPrec floatx80_rounding_precision;
     Float2NaNPropRule float_2nan_prop_rule;
+    Float3NaNPropRule float_3nan_prop_rule;
     FloatInfZeroNaNRule float_infzeronan_rule;
     bool tininess_before_rounding;
     /* should denormalised results go to zero and set the inexact flag? */