summary refs log tree commit diff stats
diff options
context:
space:
mode:
-rwxr-xr-xscripts/qcow2-to-stdout.py449
1 files changed, 449 insertions, 0 deletions
diff --git a/scripts/qcow2-to-stdout.py b/scripts/qcow2-to-stdout.py
new file mode 100755
index 0000000000..06b7c13ccb
--- /dev/null
+++ b/scripts/qcow2-to-stdout.py
@@ -0,0 +1,449 @@
+#!/usr/bin/env python3
+
+# This tool reads a disk image in any format and converts it to qcow2,
+# writing the result directly to stdout.
+#
+# Copyright (C) 2024 Igalia, S.L.
+#
+# Authors: Alberto Garcia <berto@igalia.com>
+#          Madeeha Javed <javed@igalia.com>
+#
+# SPDX-License-Identifier: GPL-2.0-or-later
+#
+# qcow2 files produced by this script are always arranged like this:
+#
+# - qcow2 header
+# - refcount table
+# - refcount blocks
+# - L1 table
+# - L2 tables
+# - Data clusters
+#
+# A note about variable names: in qcow2 there is one refcount table
+# and one (active) L1 table, although each can occupy several
+# clusters. For the sake of simplicity the code sometimes talks about
+# refcount tables and L1 tables when referring to those clusters.
+
+import argparse
+import errno
+import math
+import os
+import signal
+import struct
+import subprocess
+import sys
+import tempfile
+import time
+from contextlib import contextmanager
+
+QCOW2_DEFAULT_CLUSTER_SIZE = 65536
+QCOW2_DEFAULT_REFCOUNT_BITS = 16
+QCOW2_FEATURE_NAME_TABLE = 0x6803F857
+QCOW2_DATA_FILE_NAME_STRING = 0x44415441
+QCOW2_V3_HEADER_LENGTH = 112  # Header length in QEMU 9.0. Must be a multiple of 8
+QCOW2_INCOMPAT_DATA_FILE_BIT = 2
+QCOW2_AUTOCLEAR_DATA_FILE_RAW_BIT = 1
+QCOW_OFLAG_COPIED = 1 << 63
+QEMU_STORAGE_DAEMON = "qemu-storage-daemon"
+
+
+def bitmap_set(bitmap, idx):
+    bitmap[idx // 8] |= 1 << (idx % 8)
+
+
+def bitmap_is_set(bitmap, idx):
+    return (bitmap[idx // 8] & (1 << (idx % 8))) != 0
+
+
+def bitmap_iterator(bitmap, length):
+    for idx in range(length):
+        if bitmap_is_set(bitmap, idx):
+            yield idx
+
+
+def align_up(num, d):
+    return d * math.ceil(num / d)
+
+
+# Holes in the input file contain only zeroes so we can skip them and
+# save time. This function returns the indexes of the clusters that
+# are known to contain data. Those are the ones that we need to read.
+def clusters_with_data(fd, cluster_size):
+    data_to = 0
+    while True:
+        try:
+            data_from = os.lseek(fd, data_to, os.SEEK_DATA)
+            data_to = align_up(os.lseek(fd, data_from, os.SEEK_HOLE), cluster_size)
+            for idx in range(data_from // cluster_size, data_to // cluster_size):
+                yield idx
+        except OSError as err:
+            if err.errno == errno.ENXIO:  # End of file reached
+                break
+            raise err
+
+
+# write_qcow2_content() expects a raw input file. If we have a different
+# format we can use qemu-storage-daemon to make it appear as raw.
+@contextmanager
+def get_input_as_raw_file(input_file, input_format):
+    if input_format == "raw":
+        yield input_file
+        return
+    try:
+        temp_dir = tempfile.mkdtemp()
+        pid_file = os.path.join(temp_dir, "pid")
+        raw_file = os.path.join(temp_dir, "raw")
+        open(raw_file, "wb").close()
+        ret = subprocess.run(
+            [
+                QEMU_STORAGE_DAEMON,
+                "--daemonize",
+                "--pidfile", pid_file,
+                "--blockdev", f"driver=file,node-name=file0,driver=file,filename={input_file},read-only=on",
+                "--blockdev", f"driver={input_format},node-name=disk0,file=file0,read-only=on",
+                "--export", f"type=fuse,id=export0,node-name=disk0,mountpoint={raw_file},writable=off",
+            ],
+            capture_output=True,
+        )
+        if ret.returncode != 0:
+            sys.exit("[Error] Could not start the qemu-storage-daemon:\n" +
+                     ret.stderr.decode().rstrip('\n'))
+        yield raw_file
+    finally:
+        # Kill the storage daemon on exit
+        # and remove all temporary files
+        if os.path.exists(pid_file):
+            with open(pid_file, "r") as f:
+                pid = int(f.readline())
+            os.kill(pid, signal.SIGTERM)
+            while os.path.exists(pid_file):
+                time.sleep(0.1)
+        os.unlink(raw_file)
+        os.rmdir(temp_dir)
+
+
+def write_features(cluster, offset, data_file_name):
+    if data_file_name is not None:
+        encoded_name = data_file_name.encode("utf-8")
+        padded_name_len = align_up(len(encoded_name), 8)
+        struct.pack_into(f">II{padded_name_len}s", cluster, offset,
+                         QCOW2_DATA_FILE_NAME_STRING,
+                         len(encoded_name),
+                         encoded_name)
+        offset += 8 + padded_name_len
+
+    qcow2_features = [
+        # Incompatible
+        (0, 0, "dirty bit"),
+        (0, 1, "corrupt bit"),
+        (0, 2, "external data file"),
+        (0, 3, "compression type"),
+        (0, 4, "extended L2 entries"),
+        # Compatible
+        (1, 0, "lazy refcounts"),
+        # Autoclear
+        (2, 0, "bitmaps"),
+        (2, 1, "raw external data"),
+    ]
+    struct.pack_into(">I", cluster, offset, QCOW2_FEATURE_NAME_TABLE)
+    struct.pack_into(">I", cluster, offset + 4, len(qcow2_features) * 48)
+    offset += 8
+    for feature_type, feature_bit, feature_name in qcow2_features:
+        struct.pack_into(">BB46s", cluster, offset,
+                         feature_type, feature_bit, feature_name.encode("ascii"))
+        offset += 48
+
+
+def write_qcow2_content(input_file, cluster_size, refcount_bits, data_file_name, data_file_raw):
+    # Some basic values
+    l1_entries_per_table = cluster_size // 8
+    l2_entries_per_table = cluster_size // 8
+    refcounts_per_table  = cluster_size // 8
+    refcounts_per_block  = cluster_size * 8 // refcount_bits
+
+    # Virtual disk size, number of data clusters and L1 entries
+    disk_size = align_up(os.path.getsize(input_file), 512)
+    total_data_clusters = math.ceil(disk_size / cluster_size)
+    l1_entries = math.ceil(total_data_clusters / l2_entries_per_table)
+    allocated_l1_tables = math.ceil(l1_entries / l1_entries_per_table)
+
+    # Max L1 table size is 32 MB (QCOW_MAX_L1_SIZE in block/qcow2.h)
+    if (l1_entries * 8) > (32 * 1024 * 1024):
+        sys.exit("[Error] The image size is too large. Try using a larger cluster size.")
+
+    # Two bitmaps indicating which L1 and L2 entries are set
+    l1_bitmap = bytearray(allocated_l1_tables * l1_entries_per_table // 8)
+    l2_bitmap = bytearray(l1_entries * l2_entries_per_table // 8)
+    allocated_l2_tables = 0
+    allocated_data_clusters = 0
+
+    if data_file_raw:
+        # If data_file_raw is set then all clusters are allocated and
+        # we don't need to read the input file at all.
+        allocated_l2_tables = l1_entries
+        for idx in range(l1_entries):
+            bitmap_set(l1_bitmap, idx)
+        for idx in range(total_data_clusters):
+            bitmap_set(l2_bitmap, idx)
+    else:
+        # Open the input file for reading
+        fd = os.open(input_file, os.O_RDONLY)
+        zero_cluster = bytes(cluster_size)
+        # Read all the clusters that contain data
+        for idx in clusters_with_data(fd, cluster_size):
+            cluster = os.pread(fd, cluster_size, cluster_size * idx)
+            # If the last cluster is smaller than cluster_size pad it with zeroes
+            if len(cluster) < cluster_size:
+                cluster += bytes(cluster_size - len(cluster))
+            # If a cluster has non-zero data then it must be allocated
+            # in the output file and its L2 entry must be set
+            if cluster != zero_cluster:
+                bitmap_set(l2_bitmap, idx)
+                allocated_data_clusters += 1
+                # Allocated data clusters also need their corresponding L1 entry and L2 table
+                l1_idx = math.floor(idx / l2_entries_per_table)
+                if not bitmap_is_set(l1_bitmap, l1_idx):
+                    bitmap_set(l1_bitmap, l1_idx)
+                    allocated_l2_tables += 1
+
+    # Total amount of allocated clusters excluding the refcount blocks and table
+    total_allocated_clusters = 1 + allocated_l1_tables + allocated_l2_tables
+    if data_file_name is None:
+        total_allocated_clusters += allocated_data_clusters
+
+    # Clusters allocated for the refcount blocks and table
+    allocated_refcount_blocks = math.ceil(total_allocated_clusters  / refcounts_per_block)
+    allocated_refcount_tables = math.ceil(allocated_refcount_blocks / refcounts_per_table)
+
+    # Now we have a problem because allocated_refcount_blocks and allocated_refcount_tables...
+    # (a) increase total_allocated_clusters, and
+    # (b) need to be recalculated when total_allocated_clusters is increased
+    # So we need to repeat the calculation as long as the numbers change
+    while True:
+        new_total_allocated_clusters = total_allocated_clusters + allocated_refcount_tables + allocated_refcount_blocks
+        new_allocated_refcount_blocks = math.ceil(new_total_allocated_clusters / refcounts_per_block)
+        if new_allocated_refcount_blocks > allocated_refcount_blocks:
+            allocated_refcount_blocks = new_allocated_refcount_blocks
+            allocated_refcount_tables = math.ceil(allocated_refcount_blocks / refcounts_per_table)
+        else:
+            break
+
+    # Now that we have the final numbers we can update total_allocated_clusters
+    total_allocated_clusters += allocated_refcount_tables + allocated_refcount_blocks
+
+    # At this point we have the exact number of clusters that the output
+    # image is going to use so we can calculate all the offsets.
+    current_cluster_idx = 1
+
+    refcount_table_offset = current_cluster_idx * cluster_size
+    current_cluster_idx += allocated_refcount_tables
+
+    refcount_block_offset = current_cluster_idx * cluster_size
+    current_cluster_idx += allocated_refcount_blocks
+
+    l1_table_offset = current_cluster_idx * cluster_size
+    current_cluster_idx += allocated_l1_tables
+
+    l2_table_offset = current_cluster_idx * cluster_size
+    current_cluster_idx += allocated_l2_tables
+
+    data_clusters_offset = current_cluster_idx * cluster_size
+
+    # Calculate some values used in the qcow2 header
+    if allocated_l1_tables == 0:
+        l1_table_offset = 0
+
+    hdr_cluster_bits = int(math.log2(cluster_size))
+    hdr_refcount_bits = int(math.log2(refcount_bits))
+    hdr_length = QCOW2_V3_HEADER_LENGTH
+    hdr_incompat_features = 0
+    if data_file_name is not None:
+        hdr_incompat_features |= 1 << QCOW2_INCOMPAT_DATA_FILE_BIT
+    hdr_autoclear_features = 0
+    if data_file_raw:
+        hdr_autoclear_features |= 1 << QCOW2_AUTOCLEAR_DATA_FILE_RAW_BIT
+
+    ### Write qcow2 header
+    cluster = bytearray(cluster_size)
+    struct.pack_into(">4sIQIIQIIQQIIQQQQII", cluster, 0,
+        b"QFI\xfb",            # QCOW magic string
+        3,                     # version
+        0,                     # backing file offset
+        0,                     # backing file sizes
+        hdr_cluster_bits,
+        disk_size,
+        0,                     # encryption method
+        l1_entries,
+        l1_table_offset,
+        refcount_table_offset,
+        allocated_refcount_tables,
+        0,                     # number of snapshots
+        0,                     # snapshot table offset
+        hdr_incompat_features,
+        0,                     # compatible features
+        hdr_autoclear_features,
+        hdr_refcount_bits,
+        hdr_length,
+    )
+
+    write_features(cluster, hdr_length, data_file_name)
+
+    sys.stdout.buffer.write(cluster)
+
+    ### Write refcount table
+    cur_offset = refcount_block_offset
+    remaining_refcount_table_entries = allocated_refcount_blocks # Each entry is a pointer to a refcount block
+    while remaining_refcount_table_entries > 0:
+        cluster = bytearray(cluster_size)
+        to_write = min(remaining_refcount_table_entries, refcounts_per_table)
+        remaining_refcount_table_entries -= to_write
+        for idx in range(to_write):
+            struct.pack_into(">Q", cluster, idx * 8, cur_offset)
+            cur_offset += cluster_size
+        sys.stdout.buffer.write(cluster)
+
+    ### Write refcount blocks
+    remaining_refcount_block_entries = total_allocated_clusters # One entry for each allocated cluster
+    for tbl in range(allocated_refcount_blocks):
+        cluster = bytearray(cluster_size)
+        to_write = min(remaining_refcount_block_entries, refcounts_per_block)
+        remaining_refcount_block_entries -= to_write
+        # All refcount entries contain the number 1. The only difference
+        # is their bit width, defined when the image is created.
+        for idx in range(to_write):
+            if refcount_bits == 64:
+                struct.pack_into(">Q", cluster, idx * 8, 1)
+            elif refcount_bits == 32:
+                struct.pack_into(">L", cluster, idx * 4, 1)
+            elif refcount_bits == 16:
+                struct.pack_into(">H", cluster, idx * 2, 1)
+            elif refcount_bits == 8:
+                cluster[idx] = 1
+            elif refcount_bits == 4:
+                cluster[idx // 2] |= 1 << ((idx % 2) * 4)
+            elif refcount_bits == 2:
+                cluster[idx // 4] |= 1 << ((idx % 4) * 2)
+            elif refcount_bits == 1:
+                cluster[idx // 8] |= 1 << (idx % 8)
+        sys.stdout.buffer.write(cluster)
+
+    ### Write L1 table
+    cur_offset = l2_table_offset
+    for tbl in range(allocated_l1_tables):
+        cluster = bytearray(cluster_size)
+        for idx in range(l1_entries_per_table):
+            l1_idx = tbl * l1_entries_per_table + idx
+            if bitmap_is_set(l1_bitmap, l1_idx):
+                struct.pack_into(">Q", cluster, idx * 8, cur_offset | QCOW_OFLAG_COPIED)
+                cur_offset += cluster_size
+        sys.stdout.buffer.write(cluster)
+
+    ### Write L2 tables
+    cur_offset = data_clusters_offset
+    for tbl in range(l1_entries):
+        # Skip the empty L2 tables. We can identify them because
+        # there is no L1 entry pointing at them.
+        if bitmap_is_set(l1_bitmap, tbl):
+            cluster = bytearray(cluster_size)
+            for idx in range(l2_entries_per_table):
+                l2_idx = tbl * l2_entries_per_table + idx
+                if bitmap_is_set(l2_bitmap, l2_idx):
+                    if data_file_name is None:
+                        struct.pack_into(">Q", cluster, idx * 8, cur_offset | QCOW_OFLAG_COPIED)
+                        cur_offset += cluster_size
+                    else:
+                        struct.pack_into(">Q", cluster, idx * 8, (l2_idx * cluster_size) | QCOW_OFLAG_COPIED)
+            sys.stdout.buffer.write(cluster)
+
+    ### Write data clusters
+    if data_file_name is None:
+        for idx in bitmap_iterator(l2_bitmap, total_data_clusters):
+            cluster = os.pread(fd, cluster_size, cluster_size * idx)
+            # If the last cluster is smaller than cluster_size pad it with zeroes
+            if len(cluster) < cluster_size:
+                cluster += bytes(cluster_size - len(cluster))
+            sys.stdout.buffer.write(cluster)
+
+    if not data_file_raw:
+        os.close(fd)
+
+
+def main():
+    # Command-line arguments
+    parser = argparse.ArgumentParser(
+        description="This program converts a QEMU disk image to qcow2 "
+        "and writes it to the standard output"
+    )
+    parser.add_argument("input_file", help="name of the input file")
+    parser.add_argument(
+        "-f",
+        dest="input_format",
+        metavar="input_format",
+        help="format of the input file (default: raw)",
+        default="raw",
+    )
+    parser.add_argument(
+        "-c",
+        dest="cluster_size",
+        metavar="cluster_size",
+        help=f"qcow2 cluster size (default: {QCOW2_DEFAULT_CLUSTER_SIZE})",
+        default=QCOW2_DEFAULT_CLUSTER_SIZE,
+        type=int,
+        choices=[1 << x for x in range(9, 22)],
+    )
+    parser.add_argument(
+        "-r",
+        dest="refcount_bits",
+        metavar="refcount_bits",
+        help=f"width of the reference count entries (default: {QCOW2_DEFAULT_REFCOUNT_BITS})",
+        default=QCOW2_DEFAULT_REFCOUNT_BITS,
+        type=int,
+        choices=[1 << x for x in range(7)],
+    )
+    parser.add_argument(
+        "-d",
+        dest="data_file",
+        help="create an image with input_file as an external data file",
+        action="store_true",
+    )
+    parser.add_argument(
+        "-R",
+        dest="data_file_raw",
+        help="enable data_file_raw on the generated image (implies -d)",
+        action="store_true",
+    )
+    args = parser.parse_args()
+
+    if args.data_file_raw:
+        args.data_file = True
+
+    if not os.path.isfile(args.input_file):
+        sys.exit(f"[Error] {args.input_file} does not exist or is not a regular file.")
+
+    if args.data_file and args.input_format != "raw":
+        sys.exit("[Error] External data files can only be used with raw input images")
+
+    # A 512 byte header is too small for the data file name extension
+    if args.data_file and args.cluster_size == 512:
+        sys.exit("[Error] External data files require a larger cluster size")
+
+    if sys.stdout.isatty():
+        sys.exit("[Error] Refusing to write to a tty. Try redirecting stdout.")
+
+    if args.data_file:
+        data_file_name = args.input_file
+    else:
+        data_file_name = None
+
+    with get_input_as_raw_file(args.input_file, args.input_format) as raw_file:
+        write_qcow2_content(
+            raw_file,
+            args.cluster_size,
+            args.refcount_bits,
+            data_file_name,
+            args.data_file_raw,
+        )
+
+
+if __name__ == "__main__":
+    main()