1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
/*
* ARM AdvSIMD / SVE Vector Helpers
*
* Copyright (c) 2020 Linaro
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TARGET_ARM_VEC_INTERNAL_H
#define TARGET_ARM_VEC_INTERNAL_H
#include "fpu/softfloat.h"
typedef struct CPUArchState CPUARMState;
/*
* Note that vector data is stored in host-endian 64-bit chunks,
* so addressing units smaller than that needs a host-endian fixup.
*
* The H<N> macros are used when indexing an array of elements of size N.
*
* The H1_<N> macros are used when performing byte arithmetic and then
* casting the final pointer to a type of size N.
*/
#if HOST_BIG_ENDIAN
#define H1(x) ((x) ^ 7)
#define H1_2(x) ((x) ^ 6)
#define H1_4(x) ((x) ^ 4)
#define H2(x) ((x) ^ 3)
#define H4(x) ((x) ^ 1)
#else
#define H1(x) (x)
#define H1_2(x) (x)
#define H1_4(x) (x)
#define H2(x) (x)
#define H4(x) (x)
#endif
/*
* Access to 64-bit elements isn't host-endian dependent; we provide H8
* and H1_8 so that when a function is being generated from a macro we
* can pass these rather than an empty macro argument, for clarity.
*/
#define H8(x) (x)
#define H1_8(x) (x)
/*
* Expand active predicate bits to bytes, for byte elements.
*/
extern const uint64_t expand_pred_b_data[256];
static inline uint64_t expand_pred_b(uint8_t byte)
{
return expand_pred_b_data[byte];
}
/* Similarly for half-word elements. */
extern const uint64_t expand_pred_h_data[0x55 + 1];
static inline uint64_t expand_pred_h(uint8_t byte)
{
return expand_pred_h_data[byte & 0x55];
}
static inline void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
{
uint64_t *d = vd + opr_sz;
uintptr_t i;
for (i = opr_sz; i < max_sz; i += 8) {
*d++ = 0;
}
}
static inline int32_t do_sqrshl_bhs(int32_t src, int32_t shift, int bits,
bool round, uint32_t *sat)
{
if (shift <= -bits) {
/* Rounding the sign bit always produces 0. */
if (round) {
return 0;
}
return src >> 31;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < bits) {
int32_t val = src << shift;
if (bits == 32) {
if (!sat || val >> shift == src) {
return val;
}
} else {
int32_t extval = sextract32(val, 0, bits);
if (!sat || val == extval) {
return extval;
}
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return (1u << (bits - 1)) - (src >= 0);
}
static inline uint32_t do_uqrshl_bhs(uint32_t src, int32_t shift, int bits,
bool round, uint32_t *sat)
{
if (shift <= -(bits + round)) {
return 0;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < bits) {
uint32_t val = src << shift;
if (bits == 32) {
if (!sat || val >> shift == src) {
return val;
}
} else {
uint32_t extval = extract32(val, 0, bits);
if (!sat || val == extval) {
return extval;
}
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return MAKE_64BIT_MASK(0, bits);
}
static inline int32_t do_suqrshl_bhs(int32_t src, int32_t shift, int bits,
bool round, uint32_t *sat)
{
if (sat && src < 0) {
*sat = 1;
return 0;
}
return do_uqrshl_bhs(src, shift, bits, round, sat);
}
static inline int64_t do_sqrshl_d(int64_t src, int64_t shift,
bool round, uint32_t *sat)
{
if (shift <= -64) {
/* Rounding the sign bit always produces 0. */
if (round) {
return 0;
}
return src >> 63;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < 64) {
int64_t val = src << shift;
if (!sat || val >> shift == src) {
return val;
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return src < 0 ? INT64_MIN : INT64_MAX;
}
static inline uint64_t do_uqrshl_d(uint64_t src, int64_t shift,
bool round, uint32_t *sat)
{
if (shift <= -(64 + round)) {
return 0;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < 64) {
uint64_t val = src << shift;
if (!sat || val >> shift == src) {
return val;
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return UINT64_MAX;
}
static inline int64_t do_suqrshl_d(int64_t src, int64_t shift,
bool round, uint32_t *sat)
{
if (sat && src < 0) {
*sat = 1;
return 0;
}
return do_uqrshl_d(src, shift, round, sat);
}
int8_t do_sqrdmlah_b(int8_t, int8_t, int8_t, bool, bool);
int16_t do_sqrdmlah_h(int16_t, int16_t, int16_t, bool, bool, uint32_t *);
int32_t do_sqrdmlah_s(int32_t, int32_t, int32_t, bool, bool, uint32_t *);
int64_t do_sqrdmlah_d(int64_t, int64_t, int64_t, bool, bool);
#define do_ssat_b(val) MIN(MAX(val, INT8_MIN), INT8_MAX)
#define do_ssat_h(val) MIN(MAX(val, INT16_MIN), INT16_MAX)
#define do_ssat_s(val) MIN(MAX(val, INT32_MIN), INT32_MAX)
#define do_usat_b(val) MIN(MAX(val, 0), UINT8_MAX)
#define do_usat_h(val) MIN(MAX(val, 0), UINT16_MAX)
#define do_usat_s(val) MIN(MAX(val, 0), UINT32_MAX)
static inline uint64_t do_urshr(uint64_t x, unsigned sh)
{
if (likely(sh < 64)) {
return (x >> sh) + ((x >> (sh - 1)) & 1);
} else if (sh == 64) {
return x >> 63;
} else {
return 0;
}
}
static inline int64_t do_srshr(int64_t x, unsigned sh)
{
if (likely(sh < 64)) {
return (x >> sh) + ((x >> (sh - 1)) & 1);
} else {
/* Rounding the sign bit always produces 0. */
return 0;
}
}
/**
* bfdotadd:
* @sum: addend
* @e1, @e2: multiplicand vectors
* @fpst: floating-point status to use
*
* BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum.
* The @e1 and @e2 operands correspond to the 32-bit source vector
* slots and contain two Bfloat16 values each.
*
* Corresponds to the ARM pseudocode function BFDotAdd, specialized
* for the FPCR.EBF == 0 case.
*/
float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst);
/**
* bfdotadd_ebf:
* @sum: addend
* @e1, @e2: multiplicand vectors
* @fpst: floating-point status to use
* @fpst_odd: floating-point status to use for round-to-odd operations
*
* BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum.
* The @e1 and @e2 operands correspond to the 32-bit source vector
* slots and contain two Bfloat16 values each.
*
* Corresponds to the ARM pseudocode function BFDotAdd, specialized
* for the FPCR.EBF == 1 case.
*/
float32 bfdotadd_ebf(float32 sum, uint32_t e1, uint32_t e2,
float_status *fpst, float_status *fpst_odd);
/**
* is_ebf:
* @env: CPU state
* @statusp: pointer to floating point status to fill in
* @oddstatusp: pointer to floating point status to fill in for round-to-odd
*
* Determine whether a BFDotAdd operation should use FPCR.EBF = 0
* or FPCR.EBF = 1 semantics. On return, has initialized *statusp
* and *oddstatusp to suitable float_status arguments to use with either
* bfdotadd() or bfdotadd_ebf().
* Returns true for EBF = 1, false for EBF = 0. (The caller should use this
* to decide whether to call bfdotadd() or bfdotadd_ebf().)
*/
bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp);
/*
* Negate as for FPCR.AH=1 -- do not negate NaNs.
*/
static inline float16 bfloat16_ah_chs(float16 a)
{
return bfloat16_is_any_nan(a) ? a : bfloat16_chs(a);
}
static inline float16 float16_ah_chs(float16 a)
{
return float16_is_any_nan(a) ? a : float16_chs(a);
}
static inline float32 float32_ah_chs(float32 a)
{
return float32_is_any_nan(a) ? a : float32_chs(a);
}
static inline float64 float64_ah_chs(float64 a)
{
return float64_is_any_nan(a) ? a : float64_chs(a);
}
static inline float16 float16_maybe_ah_chs(float16 a, bool fpcr_ah)
{
return fpcr_ah && float16_is_any_nan(a) ? a : float16_chs(a);
}
static inline float32 float32_maybe_ah_chs(float32 a, bool fpcr_ah)
{
return fpcr_ah && float32_is_any_nan(a) ? a : float32_chs(a);
}
static inline float64 float64_maybe_ah_chs(float64 a, bool fpcr_ah)
{
return fpcr_ah && float64_is_any_nan(a) ? a : float64_chs(a);
}
/* Not actually called directly as a helper, but uses similar machinery. */
bfloat16 helper_sme2_ah_fmax_b16(bfloat16 a, bfloat16 b, float_status *fpst);
bfloat16 helper_sme2_ah_fmin_b16(bfloat16 a, bfloat16 b, float_status *fpst);
float32 sve_f16_to_f32(float16 f, float_status *fpst);
float16 sve_f32_to_f16(float32 f, float_status *fpst);
/*
* Decode helper functions for predicate as counter.
*/
typedef struct {
unsigned count;
unsigned lg2_stride;
bool invert;
} DecodeCounter;
static inline DecodeCounter
decode_counter(unsigned png, unsigned vl, unsigned v_esz)
{
DecodeCounter ret = { };
/* C.f. Arm pseudocode CounterToPredicate. */
if (likely(png & 0xf)) {
unsigned p_esz = ctz32(png);
/*
* maxbit = log2(pl(bits) * 4)
* = log2(vl(bytes) * 4)
* = log2(vl) + 2
* maxbit_mask = ones<maxbit:0>
* = (1 << (maxbit + 1)) - 1
* = (1 << (log2(vl) + 2 + 1)) - 1
* = (1 << (log2(vl) + 3)) - 1
* = (pow2ceil(vl) << 3) - 1
*/
ret.count = png & (((unsigned)pow2ceil(vl) << 3) - 1);
ret.count >>= p_esz + 1;
ret.invert = (png >> 15) & 1;
/*
* The Arm pseudocode for CounterToPredicate expands the count to
* a set of bits, and then the operation proceeds as for the original
* interpretation of predicates as a set of bits.
*
* We can avoid the expansion by adjusting the count and supplying
* an element stride.
*/
if (unlikely(p_esz != v_esz)) {
if (p_esz < v_esz) {
/*
* For predicate esz < vector esz, the expanded predicate
* will have more bits set than will be consumed.
* Adjust the count down, rounding up.
* Consider p_esz = MO_8, v_esz = MO_64, count 14:
* The expanded predicate would be
* 0011 1111 1111 1111
* The significant bits are
* ...1 ...1 ...1 ...1
*/
unsigned shift = v_esz - p_esz;
unsigned trunc = ret.count >> shift;
ret.count = trunc + (ret.count != (trunc << shift));
} else {
/*
* For predicate esz > vector esz, the expanded predicate
* will have bits set only at power-of-two multiples of
* the vector esz. Bits at other multiples will all be
* false. Adjust the count up, and supply the caller
* with a stride of elements to skip.
*/
unsigned shift = p_esz - v_esz;
ret.count <<= shift;
ret.lg2_stride = shift;
}
}
}
return ret;
}
/* Extract @len bits from an array of uint64_t at offset @pos bits. */
static inline uint64_t extractn(uint64_t *p, unsigned pos, unsigned len)
{
uint64_t x;
p += pos / 64;
pos = pos % 64;
x = p[0];
if (pos + len > 64) {
x = (x >> pos) | (p[1] << (-pos & 63));
pos = 0;
}
return extract64(x, pos, len);
}
/* Deposit @len bits into an array of uint64_t at offset @pos bits. */
static inline void depositn(uint64_t *p, unsigned pos,
unsigned len, uint64_t val)
{
p += pos / 64;
pos = pos % 64;
if (pos + len <= 64) {
p[0] = deposit64(p[0], pos, len, val);
} else {
unsigned len0 = 64 - pos;
unsigned len1 = len - len0;
p[0] = deposit64(p[0], pos, len0, val);
p[1] = deposit64(p[1], 0, len1, val >> len0);
}
}
#endif /* TARGET_ARM_VEC_INTERNAL_H */
|