about summary refs log tree commit diff stats
path: root/example/expression/access_c.py
blob: f285eb55e1c32df97cbbf60cf6343b597328b271 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""

This example demonstrates the recovering of possible C types for an arbitrary
variable in an assembly code (the types are inferred from the function
argument types). It also displays the C code used to access this variable.

Input:
* definitions of the C types that can be used by the code
* layout of structures (packed/not packed)
* prototype of the analyzed function

Algorithm:
The DepGraph of the target variable is computed, which gives possible
expressions for this variable. For each DepGraph solution, if the expression
depends on typed arguments, the code infers the variable type and displays the C
code to access this variable.


Here be dragons:
For the moment, Miasm can infer C types (and generate C) for simple expressions.
To summarize, Miasm only supports accesses that do not involve arithmetic or
conditional expressions such as the following:
* var1.field
* var1[12][4]
* *(var1.field->tab[4])

Unsupported forms:
* var1 + var2
* var1[var2+4]
* var1?var2->field:6

In the following example, we have an explicit cast for "age", from uint16_t to
uint64_t, and for "height", from uint32_t to uint64_t. We are adding a naive
reduction rule to support such a cast.

First, in the type inference engine:
ExprCompose(int, 0) => int
Then, in the C generator:
ExprCompose(var1, 0) => var1

"""


import sys

from miasm2.analysis.machine import Machine
from miasm2.analysis.binary import Container
from miasm2.expression.expression import ExprOp, ExprCompose, ExprId, ExprInt
from miasm2.analysis.depgraph import DependencyGraph

from miasm2.arch.x86.ctype import CTypeAMD64_unk

from miasm2.core.objc import ExprToAccessC, CHandler
from miasm2.core.objc import CTypesManagerNotPacked
from miasm2.core.ctypesmngr import CAstTypes, CTypePtr, CTypeStruct


def find_call(ira):
    """Returns (irb, index) which call"""

    for irb in ira.blocks.values():
        out = set()
        if len(irb.irs) < 2:
            continue
        assignblk = irb.irs[-2]
        for src in assignblk.itervalues():
            if not isinstance(src, ExprOp):
                continue
            if not src.op.startswith('call_func'):
                continue
            out.add((irb, len(irb.irs) - 2))
        if len(out) != 1:
            continue
        irb, index = out.pop()
        yield irb, index


class MyExprToAccessC(ExprToAccessC):
    """Custom ExprToAccessC to complete expression traduction to C"""

    def reduce_compose(self, node, **kwargs):
        """Custom reduction rule: {XXX, 0} -> XXX"""
        if not (isinstance(node.expr, ExprCompose) and
                len(node.expr.args) == 2 and
                node.expr.args[1].is_int(0)):
            return None
        found = []
        for subcgenobj in node.args[0].info:
            found.append(subcgenobj)
        return found

    reduction_rules = ExprToAccessC.reduction_rules + [reduce_compose]


def get_funcs_arg0(ctx, ira, lbl_head):
    """Compute DependencyGraph on the func @lbl_head"""
    g_dep = DependencyGraph(ira, follow_call=False)
    element = ira.arch.regs.RSI

    for irb, index in find_call(ira):
        instr = irb.irs[index].instr
        print 'Analysing references from:', hex(instr.offset), instr
        g_list = g_dep.get(irb.label, set([element]), index, set([lbl_head]))
        for dep in g_list:
            emul_result = dep.emul(ctx)
            value = emul_result[element]
            yield value


class MyCHandler(CHandler):
    """Custom CHandler to add complementary C handling rules"""

    exprToAccessC_cls = MyExprToAccessC



data = open(sys.argv[1]).read()
# Digest C informations
text = """
struct human {
        unsigned short age;
        unsigned int height;
        char name[50];
};

struct ll_human {
        struct ll_human* next;
        struct human human;
};
"""

base_types = CTypeAMD64_unk()
types_ast = CAstTypes()
types_ast.add_c_decl(text)

types_mngr = CTypesManagerNotPacked(types_ast, base_types)

# Analyze binary
cont = Container.fallback_container(data, None, addr=0)

machine = Machine("x86_64")
dis_engine, ira = machine.dis_engine, machine.ira

mdis = dis_engine(cont.bin_stream, symbol_pool=cont.symbol_pool)
addr_head = 0
blocks = mdis.dis_multiblock(addr_head)
lbl_head = mdis.symbol_pool.getby_offset(addr_head)

ir_arch_a = ira(mdis.symbol_pool)
for block in blocks:
    ir_arch_a.add_block(block)

open('graph_irflow.dot', 'w').write(ir_arch_a.graph.dot())

# Main function's first argument's type is "struct ll_human*"
ptr_llhuman = types_mngr.get_objc(CTypePtr(CTypeStruct('ll_human')))
arg0 = ExprId('ptr', 64)
ctx = {ir_arch_a.arch.regs.RDI: arg0}
expr_types = {arg0: (ptr_llhuman,),
              ExprInt(0x8A, 64): (ptr_llhuman,)}

mychandler = MyCHandler(types_mngr, expr_types)

for expr in get_funcs_arg0(ctx, ir_arch_a, lbl_head):
    print "Access:", expr
    for c_str, ctype in mychandler.expr_to_c_and_types(expr):
        print '\taccess:', c_str
        print '\tc type:', ctype