1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
|
"""Data flow analysis based on miasm intermediate representation"""
from collections import namedtuple
from miasm2.core.graph import DiGraph
from miasm2.ir.ir import AssignBlock, IRBlock
from miasm2.expression.expression import ExprLoc, ExprMem, ExprId, ExprInt
from miasm2.expression.simplifications import expr_simp
from miasm2.core.interval import interval
class ReachingDefinitions(dict):
"""
Computes for each assignblock the set of reaching definitions.
Example:
IR block:
lbl0:
0 A = 1
B = 3
1 B = 2
2 A = A + B + 4
Reach definition of lbl0:
(lbl0, 0) => {}
(lbl0, 1) => {A: {(lbl0, 0)}, B: {(lbl0, 0)}}
(lbl0, 2) => {A: {(lbl0, 0)}, B: {(lbl0, 1)}}
(lbl0, 3) => {A: {(lbl0, 2)}, B: {(lbl0, 1)}}
Source set 'REACHES' in: Kennedy, K. (1979).
A survey of data flow analysis techniques.
IBM Thomas J. Watson Research Division, Algorithm MK
This class is usable as a dictionnary whose struture is
{ (block, index): { lvalue: set((block, index)) } }
"""
ircfg = None
def __init__(self, ircfg):
super(ReachingDefinitions, self).__init__()
self.ircfg = ircfg
self.compute()
def get_definitions(self, block_lbl, assignblk_index):
"""Returns the dict { lvalue: set((def_block_lbl, def_index)) }
associated with self.ircfg.@block.assignblks[@assignblk_index]
or {} if it is not yet computed
"""
return self.get((block_lbl, assignblk_index), {})
def compute(self):
"""This is the main fixpoint"""
modified = True
while modified:
modified = False
for block in self.ircfg.blocks.itervalues():
modified |= self.process_block(block)
def process_block(self, block):
"""
Fetch reach definitions from predecessors and propagate it to
the assignblk in block @block.
"""
predecessor_state = {}
for pred_lbl in self.ircfg.predecessors(block.loc_key):
pred = self.ircfg.blocks[pred_lbl]
for lval, definitions in self.get_definitions(pred_lbl, len(pred)).iteritems():
predecessor_state.setdefault(lval, set()).update(definitions)
modified = self.get((block.loc_key, 0)) != predecessor_state
if not modified:
return False
self[(block.loc_key, 0)] = predecessor_state
for index in xrange(len(block)):
modified |= self.process_assignblock(block, index)
return modified
def process_assignblock(self, block, assignblk_index):
"""
Updates the reach definitions with values defined at
assignblock @assignblk_index in block @block.
NB: the effect of assignblock @assignblk_index in stored at index
(@block, @assignblk_index + 1).
"""
assignblk = block[assignblk_index]
defs = self.get_definitions(block.loc_key, assignblk_index).copy()
for lval in assignblk:
defs.update({lval: set([(block.loc_key, assignblk_index)])})
modified = self.get((block.loc_key, assignblk_index + 1)) != defs
if modified:
self[(block.loc_key, assignblk_index + 1)] = defs
return modified
ATTR_DEP = {"color" : "black",
"_type" : "data"}
AssignblkNode = namedtuple('AssignblkNode', ['label', 'index', 'var'])
class DiGraphDefUse(DiGraph):
"""Representation of a Use-Definition graph as defined by
Kennedy, K. (1979). A survey of data flow analysis techniques.
IBM Thomas J. Watson Research Division.
Example:
IR block:
lbl0:
0 A = 1
B = 3
1 B = 2
2 A = A + B + 4
Def use analysis:
(lbl0, 0, A) => {(lbl0, 2, A)}
(lbl0, 0, B) => {}
(lbl0, 1, B) => {(lbl0, 2, A)}
(lbl0, 2, A) => {}
"""
def __init__(self, reaching_defs,
deref_mem=False, *args, **kwargs):
"""Instanciate a DiGraph
@blocks: IR blocks
"""
self._edge_attr = {}
# For dot display
self._filter_node = None
self._dot_offset = None
self._blocks = reaching_defs.ircfg.blocks
super(DiGraphDefUse, self).__init__(*args, **kwargs)
self._compute_def_use(reaching_defs,
deref_mem=deref_mem)
def edge_attr(self, src, dst):
"""
Return a dictionary of attributes for the edge between @src and @dst
@src: the source node of the edge
@dst: the destination node of the edge
"""
return self._edge_attr[(src, dst)]
def _compute_def_use(self, reaching_defs,
deref_mem=False):
for block in self._blocks.itervalues():
self._compute_def_use_block(block,
reaching_defs,
deref_mem=deref_mem)
def _compute_def_use_block(self, block, reaching_defs, deref_mem=False):
for index, assignblk in enumerate(block):
assignblk_reaching_defs = reaching_defs.get_definitions(block.loc_key, index)
for lval, expr in assignblk.iteritems():
self.add_node(AssignblkNode(block.loc_key, index, lval))
read_vars = expr.get_r(mem_read=deref_mem)
if deref_mem and lval.is_mem():
read_vars.update(lval.arg.get_r(mem_read=deref_mem))
for read_var in read_vars:
for reach in assignblk_reaching_defs.get(read_var, set()):
self.add_data_edge(AssignblkNode(reach[0], reach[1], read_var),
AssignblkNode(block.loc_key, index, lval))
def del_edge(self, src, dst):
super(DiGraphDefUse, self).del_edge(src, dst)
del self._edge_attr[(src, dst)]
def add_uniq_labeled_edge(self, src, dst, edge_label):
"""Adds the edge (@src, @dst) with label @edge_label.
if edge (@src, @dst) already exists, the previous label is overriden
"""
self.add_uniq_edge(src, dst)
self._edge_attr[(src, dst)] = edge_label
def add_data_edge(self, src, dst):
"""Adds an edge representing a data dependencie
and sets the label accordingly"""
self.add_uniq_labeled_edge(src, dst, ATTR_DEP)
def node2lines(self, node):
lbl, index, reg = node
yield self.DotCellDescription(text="%s (%s)" % (lbl, index),
attr={'align': 'center',
'colspan': 2,
'bgcolor': 'grey'})
src = self._blocks[lbl][index][reg]
line = "%s = %s" % (reg, src)
yield self.DotCellDescription(text=line, attr={})
yield self.DotCellDescription(text="", attr={})
def dead_simp_useful_assignblks(irarch, defuse, reaching_defs):
"""Mark useful statements using previous reach analysis and defuse
Source : Kennedy, K. (1979). A survey of data flow analysis techniques.
IBM Thomas J. Watson Research Division, Algorithm MK
Return a set of triplets (block, assignblk number, lvalue) of
useful definitions
PRE: compute_reach(self)
"""
ircfg = reaching_defs.ircfg
useful = set()
for block_lbl, block in ircfg.blocks.iteritems():
successors = ircfg.successors(block_lbl)
for successor in successors:
if successor not in ircfg.blocks:
keep_all_definitions = True
break
else:
keep_all_definitions = False
# Block has a nonexistant successor or is a leaf
if keep_all_definitions or (len(successors) == 0):
valid_definitions = reaching_defs.get_definitions(block_lbl,
len(block))
for lval, definitions in valid_definitions.iteritems():
if lval in irarch.get_out_regs(block) or keep_all_definitions:
for definition in definitions:
useful.add(AssignblkNode(definition[0], definition[1], lval))
# Force keeping of specific cases
for index, assignblk in enumerate(block):
for lval, rval in assignblk.iteritems():
if (lval.is_mem() or
irarch.IRDst == lval or
lval.is_id("exception_flags") or
rval.is_function_call()):
useful.add(AssignblkNode(block_lbl, index, lval))
# Useful nodes dependencies
for node in useful:
for parent in defuse.reachable_parents(node):
yield parent
def dead_simp(irarch, ircfg):
"""
Remove useless affectations.
This function is used to analyse relation of a * complete function *
This means the blocks under study represent a solid full function graph.
Source : Kennedy, K. (1979). A survey of data flow analysis techniques.
IBM Thomas J. Watson Research Division, page 43
@ircfg: IntermediateRepresentation instance
"""
modified = False
reaching_defs = ReachingDefinitions(ircfg)
defuse = DiGraphDefUse(reaching_defs, deref_mem=True)
useful = set(dead_simp_useful_assignblks(irarch, defuse, reaching_defs))
for block in ircfg.blocks.itervalues():
irs = []
for idx, assignblk in enumerate(block):
new_assignblk = dict(assignblk)
for lval in assignblk:
if AssignblkNode(block.loc_key, idx, lval) not in useful:
del new_assignblk[lval]
modified = True
irs.append(AssignBlock(new_assignblk, assignblk.instr))
ircfg.blocks[block.loc_key] = IRBlock(block.loc_key, irs)
return modified
def _test_merge_next_block(ircfg, loc_key):
"""
Test if the irblock at @loc_key can be merge with its son
@ircfg: IRCFG instance
@loc_key: LocKey instance of the candidate parent irblock
"""
if loc_key not in ircfg.blocks:
return None
sons = ircfg.successors(loc_key)
if len(sons) != 1:
return None
son = list(sons)[0]
if ircfg.predecessors(son) != [loc_key]:
return None
if son not in ircfg.blocks:
return None
return son
def _do_merge_blocks(ircfg, loc_key, son_loc_key):
"""
Merge two irblocks at @loc_key and @son_loc_key
@ircfg: DiGrpahIR
@loc_key: LocKey instance of the parent IRBlock
@loc_key: LocKey instance of the son IRBlock
"""
assignblks = []
for assignblk in ircfg.blocks[loc_key]:
if ircfg.IRDst not in assignblk:
assignblks.append(assignblk)
continue
affs = {}
for dst, src in assignblk.iteritems():
if dst != ircfg.IRDst:
affs[dst] = src
if affs:
assignblks.append(AssignBlock(affs, assignblk.instr))
assignblks += ircfg.blocks[son_loc_key].assignblks
new_block = IRBlock(loc_key, assignblks)
ircfg.discard_edge(loc_key, son_loc_key)
for son_successor in ircfg.successors(son_loc_key):
ircfg.add_uniq_edge(loc_key, son_successor)
ircfg.discard_edge(son_loc_key, son_successor)
del ircfg.blocks[son_loc_key]
ircfg.del_node(son_loc_key)
ircfg.blocks[loc_key] = new_block
def _test_jmp_only(ircfg, loc_key):
"""
If irblock at @loc_key sets only IRDst to an ExprLoc, return the
corresponding loc_key target.
None in other cases.
@ircfg: IRCFG instance
@loc_key: LocKey instance of the candidate irblock
"""
if loc_key not in ircfg.blocks:
return None
irblock = ircfg.blocks[loc_key]
if len(irblock.assignblks) != 1:
return None
items = dict(irblock.assignblks[0]).items()
if len(items) != 1:
return None
dst, src = items[0]
assert dst.is_id("IRDst")
if not src.is_loc():
return None
return src.loc_key
def _relink_block_node(ircfg, loc_key, son_loc_key, replace_dct):
"""
Link loc_key's parents to parents directly to son_loc_key
"""
for parent in set(ircfg.predecessors(loc_key)):
parent_block = ircfg.blocks.get(parent, None)
if parent_block is None:
continue
new_block = parent_block.modify_exprs(
lambda expr:expr.replace_expr(replace_dct),
lambda expr:expr.replace_expr(replace_dct)
)
# Link parent to new dst
ircfg.add_uniq_edge(parent, son_loc_key)
# Unlink block
ircfg.blocks[new_block.loc_key] = new_block
ircfg.del_node(loc_key)
def _remove_to_son(ircfg, loc_key, son_loc_key):
"""
Merge irblocks; The final block has the @son_loc_key loc_key
Update references
Condition:
- irblock at @loc_key is a pure jump block
- @loc_key is not an entry point (can be removed)
@irblock: IRCFG instance
@loc_key: LocKey instance of the parent irblock
@son_loc_key: LocKey instance of the son irblock
"""
# Ircfg loop => don't mess
if loc_key == son_loc_key:
return False
# Unlink block destinations
ircfg.del_edge(loc_key, son_loc_key)
del ircfg.blocks[loc_key]
replace_dct = {
ExprLoc(loc_key, ircfg.IRDst.size):ExprLoc(son_loc_key, ircfg.IRDst.size)
}
_relink_block_node(ircfg, loc_key, son_loc_key, replace_dct)
return True
def _remove_to_parent(ircfg, loc_key, son_loc_key):
"""
Merge irblocks; The final block has the @loc_key loc_key
Update references
Condition:
- irblock at @loc_key is a pure jump block
- @son_loc_key is not an entry point (can be removed)
@irblock: IRCFG instance
@loc_key: LocKey instance of the parent irblock
@son_loc_key: LocKey instance of the son irblock
"""
# Ircfg loop => don't mess
if loc_key == son_loc_key:
return False
# Unlink block destinations
ircfg.del_edge(loc_key, son_loc_key)
old_irblock = ircfg.blocks[son_loc_key]
new_irblock = IRBlock(loc_key, old_irblock.assignblks)
ircfg.blocks[son_loc_key] = new_irblock
del ircfg.blocks[son_loc_key]
ircfg.add_irblock(new_irblock)
replace_dct = {
ExprLoc(son_loc_key, ircfg.IRDst.size):ExprLoc(loc_key, ircfg.IRDst.size)
}
_relink_block_node(ircfg, son_loc_key, loc_key, replace_dct)
return True
def merge_blocks(ircfg, loc_key_entries):
"""
This function modifies @ircfg to apply the following transformations:
- group an irblock with its son if the irblock has one and only one son and
this son has one and only one parent (spaghetti code).
- if an irblock is only made of an assignment to IRDst with a given label,
this irblock is dropped and its parent destination targets are
updated. The irblock must have a parent (avoid deleting the function head)
- if an irblock is a head of the graph and is only made of an assignment to
IRDst with a given label, this irblock is dropped and its son becomes the
head. References are fixed
Return True if at least an irblock has been modified
@ircfg: IRCFG instance
@loc_key_entries: loc_key to keep
"""
modified = False
todo = set(ircfg.nodes())
while todo:
loc_key = todo.pop()
# Test merge block
son = _test_merge_next_block(ircfg, loc_key)
if son is not None and son not in loc_key_entries:
_do_merge_blocks(ircfg, loc_key, son)
todo.add(loc_key)
modified = True
continue
# Test jmp only block
son = _test_jmp_only(ircfg, loc_key)
if son is not None and loc_key not in loc_key_entries:
ret = _remove_to_son(ircfg, loc_key, son)
modified |= ret
if ret:
todo.add(loc_key)
continue
# Test head jmp only block
if (son is not None and
son not in loc_key_entries and
son in ircfg.blocks):
# jmp only test done previously
ret = _remove_to_parent(ircfg, loc_key, son)
modified |= ret
if ret:
todo.add(loc_key)
continue
return modified
def remove_empty_assignblks(ircfg):
"""
Remove empty assignblks in irblocks of @ircfg
Return True if at least an irblock has been modified
@ircfg: IRCFG instance
"""
modified = False
for loc_key, block in ircfg.blocks.iteritems():
irs = []
for assignblk in block:
if len(assignblk):
irs.append(assignblk)
else:
modified = True
ircfg.blocks[loc_key] = IRBlock(loc_key, irs)
return modified
class SSADefUse(DiGraph):
"""
Generate DefUse information from SSA transformation
Links are not valid for ExprMem.
"""
def add_var_def(self, node, src):
lbl, index, dst = node
index2dst = self._links.setdefault(lbl, {})
dst2src = index2dst.setdefault(index, {})
dst2src[dst] = src
def add_def_node(self, def_nodes, node, src):
lbl, index, dst = node
if dst.is_id():
def_nodes[dst] = node
def add_use_node(self, use_nodes, node, src):
lbl, index, dst = node
sources = set()
if dst.is_mem():
sources.update(dst.arg.get_r(mem_read=True))
sources.update(src.get_r(mem_read=True))
for source in sources:
if not source.is_mem():
use_nodes.setdefault(source, set()).add(node)
def get_node_target(self, node):
lbl, index, reg = node
return self._links[lbl][index][reg]
def set_node_target(self, node, src):
lbl, index, reg = node
self._links[lbl][index][reg] = src
@classmethod
def from_ssa(cls, ssa):
"""
Return a DefUse DiGraph from a SSA graph
@ssa: SSADiGraph instance
"""
graph = cls()
# First pass
# Link line to its use and def
def_nodes = {}
use_nodes = {}
graph._links = {}
for lbl in ssa.graph.nodes():
block = ssa.graph.blocks.get(lbl, None)
if block is None:
continue
for index, assignblk in enumerate(block):
for dst, src in assignblk.iteritems():
node = lbl, index, dst
graph.add_var_def(node, src)
graph.add_def_node(def_nodes, node, src)
graph.add_use_node(use_nodes, node, src)
for dst, node in def_nodes.iteritems():
graph.add_node(node)
if dst not in use_nodes:
continue
for use in use_nodes[dst]:
graph.add_uniq_edge(node, use)
return graph
def expr_test_visit(expr, test):
result = set()
expr.visit(
lambda expr: expr,
lambda expr: test(expr, result)
)
if result:
return True
else:
return False
def expr_has_mem_test(expr, result):
if result:
# Don't analyse if we already found a candidate
return False
if expr.is_mem():
result.add(expr)
return False
return True
def expr_has_mem(expr):
"""
Return True if expr contains at least one memory access
@expr: Expr instance
"""
return expr_test_visit(expr, expr_has_mem_test)
def expr_has_call_test(expr, result):
if result:
# Don't analyse if we already found a candidate
return False
if expr.is_op() and expr.op.startswith("call"):
result.add(expr)
return False
return True
def expr_has_call(expr):
"""
Return True if expr contains at least one "call" operator
@expr: Expr instance
"""
return expr_test_visit(expr, expr_has_call_test)
class PropagateExpr(object):
def assignblk_is_propagation_barrier(self, assignblk):
for dst, src in assignblk.iteritems():
if expr_has_call(src):
return True
if dst.is_mem():
return True
return False
def has_propagation_barrier(self, assignblks):
for assignblk in assignblks:
for dst, src in assignblk.iteritems():
if expr_has_call(src):
return True
if dst.is_mem():
return True
return False
def is_mem_written(self, ssa, node, successor):
loc_a, index_a, reg_a = node
loc_b, index_b, reg_b = successor
block_b = ssa.graph.blocks[loc_b]
nodes_to_do = self.compute_reachable_nodes_from_a_to_b(ssa.graph, loc_a, loc_b)
if loc_a == loc_b:
# src is dst
assert nodes_to_do == set([loc_a])
if self.has_propagation_barrier(block_b.assignblks[index_a:index_b]):
return True
else:
# Check everyone but loc_a and loc_b
for loc in nodes_to_do - set([loc_a, loc_b]):
block = ssa.graph.blocks[loc]
if self.has_propagation_barrier(block.assignblks):
return True
# Check loc_a partially
block_a = ssa.graph.blocks[loc_a]
if self.has_propagation_barrier(block_a.assignblks[index_a:]):
return True
if nodes_to_do.intersection(ssa.graph.successors(loc_b)):
# There is a path from loc_b to loc_b => Check loc_b fully
if self.has_propagation_barrier(block_b.assignblks):
return True
else:
# Check loc_b partially
if self.has_propagation_barrier(block_b.assignblks[:index_b]):
return True
return False
def compute_reachable_nodes_from_a_to_b(self, ssa, loc_a, loc_b):
reachables_a = set(ssa.reachable_sons(loc_a))
reachables_b = set(ssa.reachable_parents_stop_node(loc_b, loc_a))
return reachables_a.intersection(reachables_b)
def propagation_allowed(self, ssa, to_replace, node_a, node_b):
"""
Return True if we can replace @node source into @node_b
"""
loc_a, index_a, reg_a = node_a
if not expr_has_mem(to_replace[reg_a]):
return True
if self.is_mem_written(ssa, node_a, node_b):
return False
return True
def propagate(self, ssa, head):
defuse = SSADefUse.from_ssa(ssa)
to_replace = {}
node_to_reg = {}
for node in defuse.nodes():
lbl, index, reg = node
src = defuse.get_node_target(node)
if expr_has_call(src):
continue
if src.is_op('Phi'):
continue
if reg.is_mem():
continue
to_replace[reg] = src
node_to_reg[node] = reg
modified = False
for node, reg in node_to_reg.iteritems():
src = to_replace[reg]
for successor in defuse.successors(node):
if not self.propagation_allowed(ssa, to_replace, node, successor):
continue
loc_a, index_a, reg_a = node
loc_b, index_b, reg_b = successor
block = ssa.graph.blocks[loc_b]
replace = {reg_a: to_replace[reg_a]}
# Replace
assignblks = list(block)
assignblk = block[index_b]
out = {}
for dst, src in assignblk.iteritems():
if src.is_op('Phi'):
out[dst] = src
continue
if src.is_mem():
ptr = src.arg
ptr = ptr.replace_expr(replace)
new_src = ExprMem(ptr, src.size)
else:
new_src = src.replace_expr(replace)
if dst.is_id():
new_dst = dst
elif dst.is_mem():
ptr = dst.arg
ptr = ptr.replace_expr(replace)
new_dst = ExprMem(ptr, dst.size)
else:
new_dst = dst.replace_expr(replace)
if not (new_dst.is_id() or new_dst.is_mem()):
new_dst = dst
if src != new_src or dst != new_dst:
modified = True
out[new_dst] = new_src
out = AssignBlock(out, assignblk.instr)
assignblks[index_b] = out
new_block = IRBlock(block.loc_key, assignblks)
ssa.graph.blocks[block.loc_key] = new_block
return modified
def stack_to_reg(expr):
if expr.is_mem():
ptr = expr.arg
SP = ir_arch_a.sp
if ptr == SP:
return ExprId("STACK.0", expr.size)
elif (ptr.is_op('+') and
len(ptr.args) == 2 and
ptr.args[0] == SP and
ptr.args[1].is_int()):
diff = int(ptr.args[1])
assert diff % 4 == 0
diff = (0 - diff) & 0xFFFFFFFF
return ExprId("STACK.%d" % (diff / 4), expr.size)
return False
def is_stack_access(ir_arch_a, expr):
if not expr.is_mem():
return False
ptr = expr.arg
diff = expr_simp(ptr - ir_arch_a.sp)
if not diff.is_int():
return False
return expr
def visitor_get_stack_accesses(ir_arch_a, expr, stack_vars):
if is_stack_access(ir_arch_a, expr):
stack_vars.add(expr)
return expr
def get_stack_accesses(ir_arch_a, expr):
result = set()
expr.visit(lambda expr:visitor_get_stack_accesses(ir_arch_a, expr, result))
return result
def get_interval_length(interval_in):
length = 0
for start, stop in interval_in.intervals:
length += stop + 1 - start
return length
def check_expr_below_stack(ir_arch_a, expr):
"""
Return False if expr pointer is below original stack pointer
@ir_arch_a: ira instance
@expr: Expression instance
"""
ptr = expr.arg
diff = expr_simp(ptr - ir_arch_a.sp)
if not diff.is_int():
return True
if int(diff) == 0 or int(expr_simp(diff.msb())) == 0:
return False
return True
def retrieve_stack_accesses(ir_arch_a, ssa):
"""
Walk the ssa graph and find stack based variables.
Return a dictionnary linking stack base address to its size/name
@ir_arch_a: ira instance
@ssa: SSADiGraph instance
"""
stack_vars = set()
for block in ssa.graph.blocks.itervalues():
for assignblk in block:
for dst, src in assignblk.iteritems():
stack_vars.update(get_stack_accesses(ir_arch_a, dst))
stack_vars.update(get_stack_accesses(ir_arch_a, src))
stack_vars = filter(lambda expr: check_expr_below_stack(ir_arch_a, expr), stack_vars)
base_to_var = {}
for var in stack_vars:
base_to_var.setdefault(var.arg, set()).add(var)
base_to_interval = {}
for addr, vars in base_to_var.iteritems():
var_interval = interval()
for var in vars:
offset = expr_simp(addr - ir_arch_a.sp)
if not offset.is_int():
# skip non linear stack offset
continue
start = int(offset)
stop = int(expr_simp(offset + ExprInt(var.size / 8, offset.size)))
mem = interval([(start, stop-1)])
var_interval += mem
base_to_interval[addr] = var_interval
if not base_to_interval:
return {}
# Check if not intervals overlap
_, tmp = base_to_interval.popitem()
while base_to_interval:
addr, mem = base_to_interval.popitem()
assert (tmp & mem).empty
tmp += mem
base_to_info = {}
base_to_name = {}
for addr, vars in base_to_var.iteritems():
name = "var_%d" % (len(base_to_info))
size = max([var.size for var in vars])
base_to_info[addr] = size, name
return base_to_info
def fix_stack_vars(expr, base_to_info):
"""
Replace local stack accesses in expr using informations in @base_to_info
@expr: Expression instance
@base_to_info: dictionnary linking stack base address to its size/name
"""
if not expr.is_mem():
return expr
ptr = expr.arg
if ptr not in base_to_info:
return expr
size, name = base_to_info[ptr]
var = ExprId(name, size)
if size == expr.size:
return var
assert expr.size < size
return var[:expr.size]
def replace_mem_stack_vars(expr, base_to_info):
return expr.visit(lambda expr:fix_stack_vars(expr, base_to_info))
def replace_stack_vars(ir_arch_a, ssa):
"""
Try to replace stack based memory accesses by variables.
WARNING: may fail
@ir_arch_a: ira instance
@ssa: SSADiGraph instance
"""
defuse = SSADefUse.from_ssa(ssa)
base_to_info = retrieve_stack_accesses(ir_arch_a, ssa)
stack_vars = {}
modified = False
for block in ssa.graph.blocks.itervalues():
assignblks = []
for assignblk in block:
out = {}
for dst, src in assignblk.iteritems():
new_dst = dst.visit(lambda expr:replace_mem_stack_vars(expr, base_to_info))
new_src = src.visit(lambda expr:replace_mem_stack_vars(expr, base_to_info))
if new_dst != dst or new_src != src:
modified |= True
out[new_dst] = new_src
out = AssignBlock(out, assignblk.instr)
assignblks.append(out)
new_block = IRBlock(block.loc_key, assignblks)
ssa.graph.blocks[block.loc_key] = new_block
return modified
def memlookup_test(expr, bs, is_addr_ro_variable, result):
if expr.is_mem() and expr.arg.is_int():
ptr = int(expr.arg)
if is_addr_ro_variable(bs, ptr, expr.size):
result.add(expr)
return False
return True
def memlookup_visit(expr, bs, is_addr_ro_variable):
result = set()
expr.visit(lambda expr: expr,
lambda expr: memlookup_test(expr, bs, is_addr_ro_variable, result))
return result
def get_memlookup(expr, bs, is_addr_ro_variable):
return memlookup_visit(expr, bs, is_addr_ro_variable)
def read_mem(bs, expr):
ptr = int(expr.arg)
var_bytes = bs.getbytes(ptr, expr.size / 8)[::-1]
try:
value = int(var_bytes.encode('hex'), 16)
except:
return expr
return ExprInt(value, expr.size)
def load_from_int(ir_arch, bs, is_addr_ro_variable):
"""
Replace memory read based on constant with static value
@ir_arch: ira instance
@bs: binstream instance
@is_addr_ro_variable: callback(addr, size) to test memory candidate
"""
modified = False
for label, block in ir_arch.blocks.iteritems():
assignblks = list()
for assignblk in block:
out = {}
for dst, src in assignblk.iteritems():
# Test src
mems = get_memlookup(src, bs, is_addr_ro_variable)
src_new = src
if mems:
replace = {}
for mem in mems:
value = read_mem(bs, mem)
replace[mem] = value
src_new = src.replace_expr(replace)
if src_new != src:
modified = True
# Test dst pointer if dst is mem
if dst.is_mem():
ptr = dst.arg
mems = get_memlookup(ptr, bs, is_addr_ro_variable)
ptr_new = ptr
if mems:
replace = {}
for mem in mems:
value = read_mem(bs, mem)
replace[mem] = value
ptr_new = ptr.replace_expr(replace)
if ptr_new != ptr:
modified = True
dst = ExprMem(ptr_new, dst.size)
out[dst] = src_new
out = AssignBlock(out, assignblk.instr)
assignblks.append(out)
block = IRBlock(block.loc_key, assignblks)
ir_arch.blocks[block.loc_key] = block
return modified
|