1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
|
#
# Copyright (C) 2011 EADS France, Fabrice Desclaux <fabrice.desclaux@eads.net>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Expressions manipulation functions
import itertools
import collections
import random
import string
import miasm2.expression.expression as m2_expr
def parity(a):
tmp = (a) & 0xFFL
cpt = 1
while tmp != 0:
cpt ^= tmp & 1
tmp >>= 1
return cpt
def merge_sliceto_slice(expr):
"""
Apply basic factorisation on ExprCompose sub components
@expr: ExprCompose
"""
out_args = []
last_index = 0
for index, arg in expr.iter_args():
# Init
if len(out_args) == 0:
out_args.append(arg)
continue
last_value = out_args[-1]
# Consecutive
if last_index + last_value.size == index:
# Merge consecutive integers
if (isinstance(arg, m2_expr.ExprInt) and
isinstance(last_value, m2_expr.ExprInt)):
new_size = last_value.size + arg.size
value = int(arg) << last_value.size
value |= int(last_value)
out_args[-1] = m2_expr.ExprInt(value, size=new_size)
continue
# Merge consecuvite slice
elif (isinstance(arg, m2_expr.ExprSlice) and
isinstance(last_value, m2_expr.ExprSlice)):
value = arg.arg
if (last_value.arg == value and
last_value.stop == arg.start):
out_args[-1] = value[last_value.start:arg.stop]
continue
# Unmergeable
last_index = index
out_args.append(arg)
return out_args
op_propag_cst = ['+', '*', '^', '&', '|', '>>',
'<<', "a>>", ">>>", "<<<",
"/", "%", 'idiv', 'imod', 'umod', 'udiv','**']
def is_pure_int(e):
"""
return True if expr is only composed with integers
/!\ ExprCond returns True is src1 and src2 are integers
"""
def modify_cond(e):
if isinstance(e, m2_expr.ExprCond):
return e.src1 | e.src2
return e
def find_int(e, s):
if isinstance(e, m2_expr.ExprId) or isinstance(e, m2_expr.ExprMem):
s.add(e)
return e
s = set()
new_e = e.visit(modify_cond)
new_e.visit(lambda x: find_int(x, s))
if s:
return False
return True
def is_int_or_cond_src_int(e):
if isinstance(e, m2_expr.ExprInt):
return True
if isinstance(e, m2_expr.ExprCond):
return (isinstance(e.src1, m2_expr.ExprInt) and
isinstance(e.src2, m2_expr.ExprInt))
return False
def fast_unify(seq, idfun=None):
# order preserving unifying list function
if idfun is None:
idfun = lambda x: x
seen = {}
result = []
for item in seq:
marker = idfun(item)
if marker in seen:
continue
seen[marker] = 1
result.append(item)
return result
def get_missing_interval(all_intervals, i_min=0, i_max=32):
"""Return a list of missing interval in all_interval
@all_interval: list of (int, int)
@i_min: int, minimal missing interval bound
@i_max: int, maximal missing interval bound"""
my_intervals = all_intervals[:]
my_intervals.sort()
my_intervals.append((i_max, i_max))
missing_i = []
last_pos = i_min
for start, stop in my_intervals:
if last_pos != start:
missing_i.append((last_pos, start))
last_pos = stop
return missing_i
class Variables_Identifier(object):
"""Identify variables in an expression.
Returns:
- variables with their corresponding values
- original expression with variables translated
"""
def __init__(self, expr, var_prefix="v"):
"""Set the expression @expr to handle and launch variable identification
process
@expr: Expr instance
@var_prefix: (optional) prefix of the variable name, default is 'v'"""
# Init
self.var_indice = itertools.count()
self.var_asked = set()
self._vars = {} # VarID -> Expr
self.var_prefix = var_prefix
# Launch recurrence
self.find_variables_rec(expr)
# Compute inter-variable dependencies
has_change = True
while has_change:
has_change = False
for var_id, var_value in self._vars.iteritems():
cur = var_value
# Do not replace with itself
to_replace = {v_val:v_id
for v_id, v_val in self._vars.iteritems()
if v_id != var_id}
var_value = var_value.replace_expr(to_replace)
if cur != var_value:
# Force @self._vars update
has_change = True
self._vars[var_id] = var_value
break
# Replace in the original equation
self._equation = expr.replace_expr({v_val: v_id for v_id, v_val
in self._vars.iteritems()})
# Compute variables dependencies
self._vars_ordered = collections.OrderedDict()
todo = set(self._vars.iterkeys())
needs = {}
## Build initial needs
for var_id, var_expr in self._vars.iteritems():
### Handle corner cases while using Variable Identifier on an
### already computed equation
needs[var_id] = [var_name
for var_name in var_expr.get_r(mem_read=True)
if self.is_var_identifier(var_name) and \
var_name in todo and \
var_name != var_id]
## Build order list
while todo:
done = set()
for var_id in todo:
all_met = True
for need in needs[var_id]:
if need not in self._vars_ordered:
# A dependency is not met
all_met = False
break
if not all_met:
continue
# All dependencies are already met, add current
self._vars_ordered[var_id] = self._vars[var_id]
done.add(var_id)
# Update the todo list
for element_done in done:
todo.remove(element_done)
def is_var_identifier(self, expr):
"Return True iff @expr is a variable identifier"
if not isinstance(expr, m2_expr.ExprId):
return False
return expr in self._vars
def find_variables_rec(self, expr):
"""Recursive method called by find_variable to expand @expr.
Set @var_names and @var_values.
This implementation is faster than an expression visitor because
we do not rebuild each expression.
"""
if (expr in self.var_asked):
# Expr has already been asked
if (expr not in self._vars.values()):
# Create var
identifier = m2_expr.ExprId("%s%s" % (self.var_prefix,
self.var_indice.next()),
size = expr.size)
self._vars[identifier] = expr
# Recursion stop case
return
else:
# First time for @expr
self.var_asked.add(expr)
if isinstance(expr, m2_expr.ExprOp):
for a in expr.args:
self.find_variables_rec(a)
elif isinstance(expr, m2_expr.ExprInt):
pass
elif isinstance(expr, m2_expr.ExprId):
pass
elif isinstance(expr, m2_expr.ExprMem):
self.find_variables_rec(expr.arg)
elif isinstance(expr, m2_expr.ExprCompose):
for arg in expr.args:
self.find_variables_rec(arg)
elif isinstance(expr, m2_expr.ExprSlice):
self.find_variables_rec(expr.arg)
elif isinstance(expr, m2_expr.ExprCond):
self.find_variables_rec(expr.cond)
self.find_variables_rec(expr.src1)
self.find_variables_rec(expr.src2)
else:
raise NotImplementedError("Type not handled: %s" % expr)
@property
def vars(self):
return self._vars_ordered
@property
def equation(self):
return self._equation
def __str__(self):
"Display variables and final equation"
out = ""
for var_id, var_expr in self.vars.iteritems():
out += "%s = %s\n" % (var_id, var_expr)
out += "Final: %s" % self.equation
return out
class ExprRandom(object):
"""Return an expression randomly generated"""
# Identifiers length
identifier_len = 5
# Identifiers' name charset
identifier_charset = string.letters
# Number max value
number_max = 0xFFFFFFFF
# Available operations
operations_by_args_number = {1: ["-"],
2: ["<<", "<<<", ">>", ">>>"],
"2+": ["+", "*", "&", "|", "^"],
}
# Maximum number of argument for operations
operations_max_args_number = 5
# If set, output expression is a perfect tree
perfect_tree = True
# Max argument size in slice, relative to slice size
slice_add_size = 10
# Maximum number of layer in compose
compose_max_layer = 5
# Maximum size of memory address in bits
memory_max_address_size = 32
# Re-use already generated elements to mimic a more realistic behavior
reuse_element = True
generated_elements = {} # (depth, size) -> [Expr]
@classmethod
def identifier(cls, size=32):
"""Return a random identifier
@size: (optional) identifier size
"""
return m2_expr.ExprId("".join([random.choice(cls.identifier_charset)
for _ in xrange(cls.identifier_len)]),
size=size)
@classmethod
def number(cls, size=32):
"""Return a random number
@size: (optional) number max bits
"""
num = random.randint(0, cls.number_max % (2**size))
return m2_expr.ExprInt(num, size)
@classmethod
def atomic(cls, size=32):
"""Return an atomic Expression
@size: (optional) Expr size
"""
available_funcs = [cls.identifier, cls.number]
return random.choice(available_funcs)(size=size)
@classmethod
def operation(cls, size=32, depth=1):
"""Return an ExprOp
@size: (optional) Operation size
@depth: (optional) Expression depth
"""
operand_type = random.choice(cls.operations_by_args_number.keys())
if isinstance(operand_type, str) and "+" in operand_type:
number_args = random.randint(int(operand_type[:-1]),
cls.operations_max_args_number)
else:
number_args = operand_type
args = [cls._gen(size=size, depth=depth - 1)
for _ in xrange(number_args)]
operand = random.choice(cls.operations_by_args_number[operand_type])
return m2_expr.ExprOp(operand,
*args)
@classmethod
def slice(cls, size=32, depth=1):
"""Return an ExprSlice
@size: (optional) Operation size
@depth: (optional) Expression depth
"""
start = random.randint(0, size)
stop = start + size
return cls._gen(size=random.randint(stop, stop + cls.slice_add_size),
depth=depth - 1)[start:stop]
@classmethod
def compose(cls, size=32, depth=1):
"""Return an ExprCompose
@size: (optional) Operation size
@depth: (optional) Expression depth
"""
# First layer
upper_bound = random.randint(1, size)
args = [cls._gen(size=upper_bound, depth=depth - 1)]
# Next layers
while (upper_bound < size):
if len(args) == (cls.compose_max_layer - 1):
# We reach the maximum size
new_upper_bound = size
else:
new_upper_bound = random.randint(upper_bound + 1, size)
args.append(cls._gen(size=new_upper_bound - upper_bound))
upper_bound = new_upper_bound
return m2_expr.ExprCompose(*args)
@classmethod
def memory(cls, size=32, depth=1):
"""Return an ExprMem
@size: (optional) Operation size
@depth: (optional) Expression depth
"""
address_size = random.randint(1, cls.memory_max_address_size)
return m2_expr.ExprMem(cls._gen(size=address_size,
depth=depth - 1),
size=size)
@classmethod
def _gen(cls, size=32, depth=1):
"""Internal function for generating sub-expression according to options
@size: (optional) Operation size
@depth: (optional) Expression depth
/!\ @generated_elements is left modified
"""
# Perfect tree handling
if not cls.perfect_tree:
depth = random.randint(max(0, depth - 2), depth)
# Element re-use
if cls.reuse_element and random.choice([True, False]) and \
(depth, size) in cls.generated_elements:
return random.choice(cls.generated_elements[(depth, size)])
# Recursion stop
if depth == 0:
return cls.atomic(size=size)
# Build a more complex expression
available_funcs = [cls.operation, cls.slice, cls.compose, cls.memory]
gen = random.choice(available_funcs)(size=size, depth=depth)
# Save it
new_value = cls.generated_elements.get((depth, size), []) + [gen]
cls.generated_elements[(depth, size)] = new_value
return gen
@classmethod
def get(cls, size=32, depth=1, clean=True):
"""Return a randomly generated expression
@size: (optional) Operation size
@depth: (optional) Expression depth
@clean: (optional) Clean expression cache between two calls
"""
# Init state
if clean:
cls.generated_elements = {}
# Get an element
got = cls._gen(size=size, depth=depth)
# Clear state
if clean:
cls.generated_elements = {}
return got
def _expr_cmp_gen(arg1, arg2):
return (arg2 - arg1) ^ ((arg2 ^ arg1) & ((arg2 - arg1) ^ arg2))
def expr_cmpu(arg1, arg2):
"""
Returns a one bit long Expression:
* 1 if @arg1 is strictly greater than @arg2 (unsigned)
* 0 otherwise.
"""
return (_expr_cmp_gen(arg1, arg2) ^ arg2 ^ arg1).msb()
def expr_cmps(arg1, arg2):
"""
Returns a one bit long Expression:
* 1 if @arg1 is strictly greater than @arg2 (signed)
* 0 otherwise.
"""
return _expr_cmp_gen(arg1, arg2).msb()
class CondConstraint(object):
"""Stand for a constraint on an Expr"""
# str of the associated operator
operator = ""
def __init__(self, expr):
self.expr = expr
def __repr__(self):
return "<%s %s 0>" % (self.expr, self.operator)
def to_constraint(self):
"""Transform itself into a constraint using Expr"""
raise NotImplementedError("Abstract method")
class CondConstraintZero(CondConstraint):
"""Stand for a constraint like 'A == 0'"""
operator = "=="
def to_constraint(self):
return m2_expr.ExprAff(self.expr, m2_expr.ExprInt(0, self.expr.size))
class CondConstraintNotZero(CondConstraint):
"""Stand for a constraint like 'A != 0'"""
operator = "!="
def to_constraint(self):
cst1, cst2 = m2_expr.ExprInt(0, 1), m2_expr.ExprInt(1, 1)
return m2_expr.ExprAff(cst1, m2_expr.ExprCond(self.expr, cst1, cst2))
ConstrainedValue = collections.namedtuple("ConstrainedValue",
["constraints", "value"])
class ConstrainedValues(set):
"""Set of ConstrainedValue"""
def __str__(self):
out = []
for sol in self:
out.append("%s with constraints:" % sol.value)
for constraint in sol.constraints:
out.append("\t%s" % constraint)
return "\n".join(out)
def possible_values(expr):
"""Return possible values for expression @expr, associated with their
condition constraint as a ConstrainedValues instance
@expr: Expr instance
"""
consvals = ConstrainedValues()
# Terminal expression
if (isinstance(expr, m2_expr.ExprInt) or
isinstance(expr, m2_expr.ExprId)):
consvals.add(ConstrainedValue(frozenset(), expr))
# Unary expression
elif isinstance(expr, m2_expr.ExprSlice):
consvals.update(ConstrainedValue(consval.constraints,
consval.value[expr.start:expr.stop])
for consval in possible_values(expr.arg))
elif isinstance(expr, m2_expr.ExprMem):
consvals.update(ConstrainedValue(consval.constraints,
m2_expr.ExprMem(consval.value,
expr.size))
for consval in possible_values(expr.arg))
elif isinstance(expr, m2_expr.ExprAff):
consvals.update(possible_values(expr.src))
# Special case: constraint insertion
elif isinstance(expr, m2_expr.ExprCond):
to_ret = set()
src1cond = CondConstraintNotZero(expr.cond)
src2cond = CondConstraintZero(expr.cond)
consvals.update(ConstrainedValue(consval.constraints.union([src1cond]),
consval.value)
for consval in possible_values(expr.src1))
consvals.update(ConstrainedValue(consval.constraints.union([src2cond]),
consval.value)
for consval in possible_values(expr.src2))
# N-ary expression
elif isinstance(expr, m2_expr.ExprOp):
# For details, see ExprCompose
consvals_args = [possible_values(arg) for arg in expr.args]
for consvals_possibility in itertools.product(*consvals_args):
args_value = [consval.value for consval in consvals_possibility]
args_constraint = itertools.chain(*[consval.constraints
for consval in consvals_possibility])
consvals.add(ConstrainedValue(frozenset(args_constraint),
m2_expr.ExprOp(expr.op, *args_value)))
elif isinstance(expr, m2_expr.ExprCompose):
# Generate each possibility for sub-argument, associated with the start
# and stop bit
consvals_args = [map(lambda x: x, possible_values(arg))
for arg in expr.args]
for consvals_possibility in itertools.product(*consvals_args):
# Merge constraint of each sub-element
args_constraint = itertools.chain(*[consval.constraints
for consval in consvals_possibility])
# Gen the corresponding constraints / ExprCompose
args = [consval.value for consval in consvals_possibility]
consvals.add(
ConstrainedValue(frozenset(args_constraint),
m2_expr.ExprCompose(*args)))
else:
raise RuntimeError("Unsupported type for expr: %s" % type(expr))
return consvals
|