1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
#include "BufferQueue.hpp"
#include <algorithm>
#include <thread>
#include <iostream>
#include <chrono>
#include <cmath>
BufferQueue::BufferQueue(size_t capacity, size_t maxExplicitProducers)
{
m_queue = moodycamel::ConcurrentQueue<QueueItem>(capacity, maxExplicitProducers, 0);
}
bool BufferQueue::enqueue(QueueItem item, ProducerToken &token)
{
return m_queue.try_enqueue(token, std::move(item));
}
bool BufferQueue::enqueueBlocking(QueueItem item, ProducerToken &token, std::chrono::milliseconds timeout)
{
auto start = std::chrono::steady_clock::now();
int backoffMs = 1;
const int maxBackoffMs = 100;
while (true)
{
QueueItem itemCopy = item;
if (enqueue(std::move(itemCopy), token))
{
return true;
}
auto elapsed = std::chrono::steady_clock::now() - start;
if (elapsed >= timeout)
{
return false;
}
int sleepTime = backoffMs;
// Make sure we don't sleep longer than our remaining timeout
if (timeout != std::chrono::milliseconds::max())
{
auto remainingTime = timeout - elapsed;
if (remainingTime <= std::chrono::milliseconds(sleepTime))
{
sleepTime = std::max(1, static_cast<int>(std::chrono::duration_cast<std::chrono::milliseconds>(remainingTime).count()));
}
}
std::this_thread::sleep_for(std::chrono::milliseconds(sleepTime));
backoffMs = std::min(backoffMs * 2, maxBackoffMs);
}
}
bool BufferQueue::enqueueBatch(std::vector<QueueItem> items, ProducerToken &token)
{
return m_queue.try_enqueue_bulk(token, std::make_move_iterator(items.begin()), items.size());
}
bool BufferQueue::enqueueBatchBlocking(std::vector<QueueItem> items, ProducerToken &token,
std::chrono::milliseconds timeout)
{
auto start = std::chrono::steady_clock::now();
int backoffMs = 1;
const int maxBackoffMs = 100;
while (true)
{
std::vector<QueueItem> itemsCopy = items;
if (enqueueBatch(std::move(itemsCopy), token))
{
return true;
}
auto elapsed = std::chrono::steady_clock::now() - start;
if (elapsed >= timeout)
{
return false;
}
int sleepTime = backoffMs;
// Make sure we don't sleep longer than our remaining timeout
if (timeout != std::chrono::milliseconds::max())
{
auto remainingTime = timeout - elapsed;
if (remainingTime <= std::chrono::milliseconds(sleepTime))
{
sleepTime = std::max(1, static_cast<int>(std::chrono::duration_cast<std::chrono::milliseconds>(remainingTime).count()));
}
}
std::this_thread::sleep_for(std::chrono::milliseconds(sleepTime));
backoffMs = std::min(backoffMs * 2, maxBackoffMs);
}
}
bool BufferQueue::tryDequeue(QueueItem &item, ConsumerToken &token)
{
if (m_queue.try_dequeue(token, item))
{
return true;
}
return false;
}
size_t BufferQueue::tryDequeueBatch(std::vector<QueueItem> &items, size_t maxItems, ConsumerToken &token)
{
items.clear();
items.resize(maxItems);
size_t dequeued = m_queue.try_dequeue_bulk(token, items.begin(), maxItems);
items.resize(dequeued);
return dequeued;
}
bool BufferQueue::flush()
{
do
{
std::this_thread::sleep_for(std::chrono::milliseconds(500));
} while (m_queue.size_approx() != 0);
return true;
}
size_t BufferQueue::size() const
{
return m_queue.size_approx();
}
|