about summary refs log tree commit diff stats
path: root/src/dynarec/rv64/rv64_emitter.h
blob: f5ad25301133feaf7a50cee4edcbb9e7c0ed67a0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
#ifndef __RV64_EMITTER_H__
#define __RV64_EMITTER_H__

#include "rv64_mapping.h"

// RV64 Emitter

// replacement for F_OF internaly, using a reserved bit. Need to use F_OF2 internaly, never F_OF directly!
#define F_OF2 F_res3

// split a 32bits value in 20bits + 12bits, adjust the upper part is 12bits is negative
#define SPLIT20(A) (((A) + 0x800) >> 12)
#define SPLIT12(A) ((A) & 0xfff)

// MOV64x/MOV32w is quite complex, so use a function for this
#define MOV64x(A, B) rv64_move64(dyn, ninst, A, B)
#define MOV32w(A, B) rv64_move32(dyn, ninst, A, B, 1)
#define MOV64xw(A, B)     \
    do {                  \
        if (rex.w) {      \
            MOV64x(A, B); \
        } else {          \
            MOV32w(A, B); \
        }                 \
    } while (0)
#define MOV64z(A, B)        \
    do {                    \
        if (rex.is32bits) { \
            MOV32w(A, B);   \
        } else {            \
            MOV64x(A, B);   \
        }                   \
    } while (0)

// ZERO the upper part, compatible to zba, xtheadbb, and rv64gc
#define ZEXTW2(rd, rs1)              \
    do {                             \
        if (cpuext.zba) {            \
            ZEXTW(rd, rs1);          \
        } else if (cpuext.xtheadbb) {\
            TH_EXTU(rd, rs1, 31, 0); \
        } else {                     \
            SLLI(rd, rs1, 32);       \
            SRLI(rd, rd, 32);        \
        }                            \
    } while (0)
#define ZEROUP(r) ZEXTW2(r, r)

#define R_type(funct7, rs2, rs1, funct3, rd, opcode) ((funct7) << 25 | (rs2) << 20 | (rs1) << 15 | (funct3) << 12 | (rd) << 7 | (opcode))
#define I_type(imm12, rs1, funct3, rd, opcode)       ((imm12) << 20 | (rs1) << 15 | (funct3) << 12 | (rd) << 7 | (opcode))
#define S_type(imm12, rs2, rs1, funct3, opcode)      (((imm12) >> 5) << 25 | (rs2) << 20 | (rs1) << 15 | (funct3) << 12 | ((imm12) & 31) << 7 | (opcode))
#define B_type(imm13, rs2, rs1, funct3, opcode)      ((((imm13) >> 12) & 1) << 31 | (((imm13) >> 5) & 63) << 25 | (rs2) << 20 | (rs1) << 15 | (funct3) << 12 | (((imm13) >> 1) & 15) << 8 | (((imm13) >> 11) & 1) << 7 | (opcode))
#define U_type(imm32, rd, opcode)                    (((imm32) >> 12) << 12 | (rd) << 7 | (opcode))
#define J_type(imm21, rd, opcode)                    ((((imm21) >> 20) & 1) << 31 | (((imm21) >> 1) & 0b1111111111) << 21 | (((imm21) >> 11) & 1) << 20 | (((imm21) >> 12) & 0b11111111) << 12 | (rd) << 7 | (opcode))

// RV32I
// put imm20 in the [31:12] bits of rd, zero [11:0] and sign extend bits31
#define LUI(rd, imm20) EMIT(U_type((imm20) << 12, rd, 0b0110111))

// put PC+imm20 in rd
#define AUIPC(rd, imm20) EMIT(U_type((imm20) << 12, rd, 0b0010111))

#define JAL_gen(rd, imm21) J_type(imm21, rd, 0b1101111)
// Unconditional branch, no return address set
#define B(imm21)               EMIT(JAL_gen(xZR, imm21))
#define B__(reg1, reg2, imm21) B(imm21)
// Unconditional branch, return set to xRA
#define JAL(imm21) EMIT(JAL_gen(xRA, imm21))
// Unconditional branch, without link
#define J(imm21) EMIT(JAL_gen(xZR, imm21))

#define JALR_gen(rd, rs1, imm12) I_type(imm12, rs1, 0b000, rd, 0b1100111)
// Unconditionnal branch to r, no return address set
#define BR(r) EMIT(JALR_gen(xZR, r, 0))
// Unconditionnal branch to r+i12, no return address set
#define BR_I12(r, imm12) EMIT(JALR_gen(xZR, r, (imm12) & 0b111111111111))
// Unconditionnal branch to r, return address set to xRA
#define JALR(rd, rs) EMIT(JALR_gen(rd, rs, 0))
// Unconditionnal branch to r+i12, return address set to xRA
#define JALR_I12(rd, rs, imm12) EMIT(JALR_gen(rd, rs, (imm12) & 0b111111111111))

// rd = rs1 + imm12
#define ADDI(rd, rs1, imm12) EMIT(I_type((imm12) & 0b111111111111, rs1, 0b000, rd, 0b0010011))
// rd = rs1 - imm12 (pseudo instruction)
#define SUBI(rd, rs1, imm12) EMIT(I_type((-(imm12)) & 0b111111111111, rs1, 0b000, rd, 0b0010011))
// rd = (rs1<imm12)?1:0
#define SLTI(rd, rs1, imm12) EMIT(I_type((imm12) & 0b111111111111, rs1, 0b010, rd, 0b0010011))
// rd = (rs1<imm12)?1:0 unsigned
#define SLTIU(rd, rs1, imm12) EMIT(I_type((imm12) & 0b111111111111, rs1, 0b011, rd, 0b0010011))
// rd = rs1 ^ imm12
#define XORI(rd, rs1, imm12) EMIT(I_type((imm12) & 0b111111111111, rs1, 0b100, rd, 0b0010011))
// rd = rs1 | imm12
#define ORI(rd, rs1, imm12) EMIT(I_type((imm12) & 0b111111111111, rs1, 0b110, rd, 0b0010011))
// rd = rs1 & imm12
#define ANDI(rd, rs1, imm12) EMIT(I_type((imm12) & 0b111111111111, rs1, 0b111, rd, 0b0010011))

// rd = imm12
#define MOV_U12(rd, imm12) ADDI(rd, xZR, imm12)
// nop
#define NOP() ADDI(xZR, xZR, 0)

#define UDF() EMIT(0xc0001073)

// rd = rs1 + rs2
#define ADD(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b000, rd, 0b0110011))
// rd = rs1 + rs2
#define ADDW(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b000, rd, 0b0111011))
// rd = rs1 + rs2
#define ADDxw(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b000, rd, rex.w ? 0b0110011 : 0b0111011))
// rd = rs1 + rs2
#define ADDz(rd, rs1, rs2)      \
    do {                        \
        if (!rex.is32bits) {    \
            ADD(rd, rs1, rs2);  \
        } else {                \
            ADDW(rd, rs1, rs2); \
            ZEROUP(rd);         \
        }                       \
    } while (0)
// rd = rs1 - rs2
#define SUB(rd, rs1, rs2) EMIT(R_type(0b0100000, rs2, rs1, 0b000, rd, 0b0110011))
// rd = rs1 - rs2
#define SUBW(rd, rs1, rs2) EMIT(R_type(0b0100000, rs2, rs1, 0b000, rd, 0b0111011))
// rd = rs1 - rs2
#define SUBxw(rd, rs1, rs2) EMIT(R_type(0b0100000, rs2, rs1, 0b000, rd, rex.w ? 0b0110011 : 0b0111011))
// rd = rs1 - rs2
#define SUBz(rd, rs1, rs2)     \
    do {                       \
        if (!rex.is32bits) {   \
            SUB(rd, rs1, rs2); \
        } else {               \
            SUB(rd, rs1, rs2); \
            ZEROUP(rd);        \
        }                      \
    } while (0)
// rd = rs1<<rs2
#define SLL(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b001, rd, 0b0110011))
// rd = (rs1<rs2)?1:0
#define SLT(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b010, rd, 0b0110011))
// rd = (rs1<rs2)?1:0 Unsigned
#define SLTU(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b011, rd, 0b0110011))
// rd = rs1 ^ rs2
#define XOR(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b100, rd, 0b0110011))
// rd = rs1 ^ rs2
#define XORxw(rd, rs1, rs2)     \
    do {                        \
        XOR(rd, rs1, rs2);      \
        if (!rex.w) ZEROUP(rd); \
    } while (0)
// rd = rs1>>rs2 logical
#define SRL(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b101, rd, 0b0110011))
// rd = rs1>>rs2 arithmetic
#define SRA(rd, rs1, rs2) EMIT(R_type(0b0100000, rs2, rs1, 0b101, rd, 0b0110011))
// rd = rs1 | rs2
#define OR(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b110, rd, 0b0110011))
// rd = rs1 & rs2
#define AND(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b111, rd, 0b0110011))

// rd = rs1 (pseudo instruction)
#define MV(rd, rs1) ADDI(rd, rs1, 0)
// rd = rs1 (pseudo instruction)
#define MVxw(rd, rs1)            \
    do {                         \
        if (rex.w) {             \
            MV(rd, rs1);         \
        } else {                 \
            ZEXTW2(rd, rs1);     \
        }                        \
    } while (0)
// rd = rs1 (pseudo instruction)
#define MVz(rd, rs1)             \
    do {                         \
        if (rex.is32bits) {      \
            ZEXTW2(rd, rs1);     \
        } else {                 \
            MV(rd, rs1);         \
        }                        \
    } while (0)
// rd = !rs1
#define NOT(rd, rs1) XORI(rd, rs1, -1)
// rd = -rs1
#define NEG(rd, rs1) SUB(rd, xZR, rs1)
// rd = -rs1
#define NEGxw(rd, rs1) SUBxw(rd, xZR, rs1)
// rd = rs1 == 0
#define SEQZ(rd, rs1) SLTIU(rd, rs1, 1)
// rd = rs1 != 0
#define SNEZ(rd, rs1) SLTU(rd, xZR, rs1)


#define BEQ(rs1, rs2, imm13)  EMIT(B_type(imm13, rs2, rs1, 0b000, 0b1100011))
#define BNE(rs1, rs2, imm13)  EMIT(B_type(imm13, rs2, rs1, 0b001, 0b1100011))
#define BLT(rs1, rs2, imm13)  EMIT(B_type(imm13, rs2, rs1, 0b100, 0b1100011))
#define BGE(rs1, rs2, imm13)  EMIT(B_type(imm13, rs2, rs1, 0b101, 0b1100011))
#define BLTU(rs1, rs2, imm13) EMIT(B_type(imm13, rs2, rs1, 0b110, 0b1100011))
#define BGEU(rs1, rs2, imm13) EMIT(B_type(imm13, rs2, rs1, 0b111, 0b1100011))

#define BGT(rs1, rs2, imm13)  BLT(rs2, rs1, imm13)
#define BLE(rs1, rs2, imm13)  BGE(rs2, rs1, imm13)
#define BGTU(rs1, rs2, imm13) BLTU(rs2, rs1, imm13)
#define BLEU(rs1, rs2, imm13) BGEU(rs2, rs1, imm13)

#define SEQ(rd, rs1, rs2)        \
    do {                         \
        if (rs1 == xZR) {        \
            SEQZ(rd, rs2);       \
        } else if (rs2 == xZR) { \
            SEQZ(rd, rs1);       \
        } else {                 \
            XOR(rd, rs1, rs2);   \
            SEQZ(rd, rd);        \
        }                        \
    } while (0)

#define SNE(rd, rs1, rs2)        \
    do {                         \
        if (rs1 == xZR) {        \
            SNEZ(rd, rs2);       \
        } else if (rs2 == xZR) { \
            SNEZ(rd, rs1);       \
        } else {                 \
            XOR(rd, rs1, rs2);   \
            SNEZ(rd, rd);        \
        }                        \
    } while (0)

#define SGE(rd, rs1, rs2)      \
    do {                       \
        if (rs1 == xZR) {      \
            SLTI(rd, rs2, 1);  \
        } else {               \
            SLT(rd, rs1, rs2); \
            XORI(rd, rd, 1);   \
        }                      \
    } while (0)

#define SGEU(rd, rs1, rs2)       \
    do {                         \
        if (rs1 == xZR) {        \
            SEQZ(rd, rs2);       \
        } else if (rs2 == xZR) { \
            ADDI(rd, xZR, 1);    \
        } else {                 \
            SLTU(rd, rs1, rs2);  \
            XORI(rd, rd, 1);     \
        }                        \
    } while (0)

#define SGT(rd, rs1, rs2)  SLT(rd, rs2, rs1);
#define SLE(rd, rs1, rs2)  SGE(rd, rs2, rs1);
#define SGTU(rd, rs1, rs2) SLTU(rd, rs2, rs1);
#define SLEU(rd, rs1, rs2) SGEU(rd, rs2, rs1);

#define MVEQ(rd, rs1, rs2, rs3)                               \
    if (cpuext.xtheadcondmov && (rs2 == xZR || rs3 == xZR)) { \
        TH_MVEQZ(rd, rs1, ((rs2 == xZR) ? rs3 : rs2));        \
    } else {                                                  \
        BNE(rs2, rs3, 8);                                     \
        MV(rd, rs1);                                          \
    }
#define MVNE(rd, rs1, rs2, rs3)                               \
    if (cpuext.xtheadcondmov && (rs2 == xZR || rs3 == xZR)) { \
        TH_MVNEZ(rd, rs1, ((rs2 == xZR) ? rs3 : rs2));        \
    } else {                                                  \
        BEQ(rs2, rs3, 8);                                     \
        MV(rd, rs1);                                          \
    }
#define MVLT(rd, rs1, rs2, rs3) \
    BGE(rs2, rs3, 8);           \
    MV(rd, rs1);
#define MVGE(rd, rs1, rs2, rs3) \
    BLT(rs2, rs3, 8);           \
    MV(rd, rs1);
#define MVLTU(rd, rs1, rs2, rs3) \
    BGEU(rs2, rs3, 8);           \
    MV(rd, rs1);
#define MVGEU(rd, rs1, rs2, rs3) \
    BLTU(rs2, rs3, 8);           \
    MV(rd, rs1);
#define MVGT(rd, rs1, rs2, rs3) \
    BGE(rs3, rs2, 8);           \
    MV(rd, rs1);
#define MVLE(rd, rs1, rs2, rs3) \
    BLT(rs3, rs2, 8);           \
    MV(rd, rs1);
#define MVGTU(rd, rs1, rs2, rs3) \
    BGEU(rs3, rs2, 8);           \
    MV(rd, rs1);
#define MVLEU(rd, rs1, rs2, rs3) \
    BLTU(rs3, rs2, 8);           \
    MV(rd, rs1);

#define MVEQZ(rd, rs1, rs2) MVEQ(rd, rs1, rs2, xZR)
#define MVNEZ(rd, rs1, rs2) MVNE(rd, rs1, rs2, xZR)

#define BEQ_safe(rs1, rs2, imm)              \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BEQ(rs1, rs2, imm);                  \
        NOP();                               \
    } else {                                 \
        BNE(rs1, rs2, 8);                    \
        B(imm - 4);                          \
    }
#define BNE_safe(rs1, rs2, imm)              \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BNE(rs1, rs2, imm);                  \
        NOP();                               \
    } else {                                 \
        BEQ(rs1, rs2, 8);                    \
        B(imm - 4);                          \
    }
#define BLT_safe(rs1, rs2, imm)              \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BLT(rs1, rs2, imm);                  \
        NOP();                               \
    } else {                                 \
        BGE(rs1, rs2, 8);                    \
        B(imm - 4);                          \
    }
#define BGE_safe(rs1, rs2, imm)              \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BGE(rs1, rs2, imm);                  \
        NOP();                               \
    } else {                                 \
        BLT(rs1, rs2, 8);                    \
        B(imm - 4);                          \
    }
#define BLTU_safe(rs1, rs2, imm)             \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BLTU(rs1, rs2, imm);                 \
        NOP();                               \
    } else {                                 \
        BGEU(rs1, rs2, 8);                   \
        B(imm - 4);                          \
    }
#define BGEU_safe(rs1, rs2, imm)             \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BGEU(rs1, rs2, imm);                 \
        NOP();                               \
    } else {                                 \
        BLTU(rs1, rs2, 8);                   \
        B(imm - 4);                          \
    }
#define BGT_safe(rs1, rs2, imm)              \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BGT(rs1, rs2, imm);                  \
        NOP();                               \
    } else {                                 \
        BLE(rs1, rs2, 8);                    \
        B(imm - 4);                          \
    }
#define BLE_safe(rs1, rs2, imm)              \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BLE(rs1, rs2, imm);                  \
        NOP();                               \
    } else {                                 \
        BGT(rs1, rs2, 8);                    \
        B(imm - 4);                          \
    }
#define BGTU_safe(rs1, rs2, imm)             \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BGTU(rs1, rs2, imm);                 \
        NOP();                               \
    } else {                                 \
        BLEU(rs1, rs2, 8);                   \
        B(imm - 4);                          \
    }
#define BLEU_safe(rs1, rs2, imm)             \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BLEU(rs1, rs2, imm);                 \
        NOP();                               \
    } else {                                 \
        BGTU(rs1, rs2, 8);                   \
        B(imm - 4);                          \
    }

#define BEQZ(rs1, imm13) BEQ(rs1, 0, imm13)
#define BNEZ(rs1, imm13) BNE(rs1, 0, imm13)

#define BEQZ_safe(rs1, imm)                  \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BEQZ(rs1, imm);                      \
        NOP();                               \
    } else {                                 \
        BNEZ(rs1, 8);                        \
        B(imm - 4);                          \
    }
#define BNEZ_safe(rs1, imm)                  \
    if ((imm) > -0x1000 && (imm) < 0x1000) { \
        BNEZ(rs1, imm);                      \
        NOP();                               \
    } else {                                 \
        BEQZ(rs1, 8);                        \
        B(imm - 4);                          \
    }

// rd = 4-bytes[rs1+imm12] signed extended
#define LW(rd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b010, rd, 0b0000011))
// rd = 2-bytes[rs1+imm12] signed extended
#define LH(rd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b001, rd, 0b0000011))
// rd = byte[rs1+imm12] signed extended
#define LB(rd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b000, rd, 0b0000011))
// rd = 2-bytes[rs1+imm12] zero extended
#define LHU(rd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b101, rd, 0b0000011))
// rd = byte[rs1+imm12] zero extended
#define LBU(rd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b100, rd, 0b0000011))
// byte[rs1+imm12] = rs2
#define SB(rs2, rs1, imm12) EMIT(S_type(imm12, rs2, rs1, 0b000, 0b0100011))
// 2-bytes[rs1+imm12] = rs2
#define SH(rs2, rs1, imm12) EMIT(S_type(imm12, rs2, rs1, 0b001, 0b0100011))
// 4-bytes[rs1+imm12] = rs2
#define SW(rs2, rs1, imm12) EMIT(S_type(imm12, rs2, rs1, 0b010, 0b0100011))

#define PUSH1(reg)                                \
    do {                                          \
        if (cpuext.xtheadmemidx && reg != xRSP) { \
            TH_SDIB(reg, xRSP, -8, 0);            \
        } else {                                  \
            SD(reg, xRSP, 0xFF8);                 \
            SUBI(xRSP, xRSP, 8);                  \
        }                                         \
    } while (0)
#define POP1(reg)                                   \
    do {                                            \
        if (cpuext.xtheadmemidx && reg != xRSP) {   \
            TH_LDIA(reg, xRSP, 8, 0);               \
        } else {                                    \
            LD(reg, xRSP, 0);                       \
            if (reg != xRSP) ADDI(xRSP, xRSP, 8);   \
        }                                           \
    } while (0)
#define PUSH1_32(reg)                             \
    do {                                          \
        if (cpuext.xtheadmemidx && reg != xRSP) { \
            TH_SWIB(reg, xRSP, -4, 0);            \
        } else {                                  \
            SW(reg, xRSP, 0xFFC);                 \
            SUBI(xRSP, xRSP, 4);                  \
        }                                         \
    } while (0)
#define POP1_32(reg)                              \
    do {                                          \
        if (cpuext.xtheadmemidx && reg != xRSP) { \
            TH_LWUIA(reg, xRSP, 4, 0);            \
        } else {                                  \
            LWU(reg, xRSP, 0);                    \
            if (reg != xRSP) ADDI(xRSP, xRSP, 4); \
        }                                         \
    } while (0)

#define POP1z(reg)      \
    if (rex.is32bits) { \
        POP1_32(reg);   \
    } else {            \
        POP1(reg);      \
    }
#define PUSH1z(reg)     \
    if (rex.is32bits) { \
        PUSH1_32(reg);  \
    } else {            \
        PUSH1(reg);     \
    }

#define PUSH1_16(reg)                             \
    do {                                          \
        if (cpuext.xtheadmemidx && reg != xRSP) { \
            TH_SHIB(reg, xRSP, -2, 0);            \
        } else {                                  \
            SH(reg, xRSP, 0xFFE);                 \
            SUBI(xRSP, xRSP, 2);                  \
        }                                         \
    } while (0)

#define POP1_16(reg)                              \
    do {                                          \
        if (cpuext.xtheadmemidx && reg != xRSP) { \
            TH_LHUIA(reg, xRSP, 2, 0);            \
        } else {                                  \
            LHU(reg, xRSP, 0);                    \
            if (reg != xRSP) ADDI(xRSP, xRSP, 2); \
        }                                         \
    } while (0)

#define FENCE_gen(pred, succ) (((pred) << 24) | ((succ) << 20) | 0b0001111)
#define FENCE_R_RW()          EMIT(FENCE_gen(2, 3))
#define FENCE_W_W()           EMIT(FENCE_gen(1, 1))
#define FENCE_RW_RW()         EMIT(FENCE_gen(3, 3))

#define DMB_ISH()   FENCE_RW_RW()
#define DMB_ISHLD() FENCE_R_RW()
#define DMB_ISHST() FENCE_W_W()

#define FENCE_I_gen() ((0b001 << 12) | 0b0001111)
#define FENCE_I()     EMIT(FENCE_I_gen())

#define EBREAK() EMIT(I_type(1, 0, 0, 0, 0b1110011))

// RV64I
#define LWU(rd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b110, rd, 0b0000011))

// rd = [rs1 + imm12]
#define LD(rd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b011, rd, 0b0000011))
// rd = [rs1 + imm12]
#define LDxw(rd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b011 << (1 - rex.w), rd, 0b0000011))
// rd = [rs1 + imm12]
#define LDz(rd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b011 << rex.is32bits, rd, 0b0000011))
// [rs1 + imm12] = rs2
#define SD(rs2, rs1, imm12) EMIT(S_type(imm12, rs2, rs1, 0b011, 0b0100011))
// [rs1 + imm12] = rs2
#define SDxw(rs2, rs1, imm12) EMIT(S_type(imm12, rs2, rs1, 0b010 + rex.w, 0b0100011))
// [rs1 + imm12] = rs2
#define SDz(rs2, rs1, imm12) EMIT(S_type(imm12, rs2, rs1, 0b010 + (1 - rex.is32bits), 0b0100011))

// Shift Left Immediate
#define SLLI(rd, rs1, imm6) EMIT(I_type(((imm6) & 0x3f), rs1, 0b001, rd, 0b0010011))
// Shift Right Logical Immediate
#define SRLI(rd, rs1, imm6) EMIT(I_type(((imm6) & 0x3f), rs1, 0b101, rd, 0b0010011))
// Shift Right Arithmetic Immediate
#define SRAI(rd, rs1, imm6) EMIT(I_type(((imm6) & 0x3f) | (0b010000 << 6), rs1, 0b101, rd, 0b0010011))

// rd = rs1 + imm12
#define ADDIW(rd, rs1, imm12) EMIT(I_type((imm12) & 0b111111111111, rs1, 0b000, rd, 0b0011011))
// rd = rs1 - imm12
#define SUBIW(rd, rs1, imm12) EMIT(I_type((-imm12) & 0b111111111111, rs1, 0b000, rd, 0b0011011))
// rd = rs1 + imm12
#define ADDIxw(rd, rs1, imm12) EMIT(I_type((imm12) & 0b111111111111, rs1, 0b000, rd, rex.w ? 0b0010011 : 0b0011011))
// rd = rs1 + imm12
#define ADDIz(rd, rs1, imm12)      \
    do {                           \
        if (!rex.is32bits) {       \
            ADDI(rd, rs1, imm12);  \
        } else {                   \
            ADDIW(rd, rs1, imm12); \
            ZEROUP(rd);            \
        }                          \
    } while (0)

// rd = rs1 + (rs2 << imm2)
#define ADDSL(rd, rs1, rs2, imm2, scratch) \
    if (!(imm2)) {                         \
        ADD(rd, rs1, rs2);                 \
    } else if (cpuext.zba) {               \
        SHxADD(rd, rs2, imm2, rs1);        \
    } else if (cpuext.xtheadba) {          \
        TH_ADDSL(rd, rs1, rs2, imm2);      \
    } else {                               \
        SLLI(scratch, rs2, imm2);          \
        ADD(rd, rs1, scratch);             \
    }

#define SEXT_W(rd, rs1) ADDIW(rd, rs1, 0)

// rd = rs1<<rs2
#define SLLW(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b001, rd, 0b0111011))
// rd = rs1>>rs2 logical
#define SRLW(rd, rs1, rs2) EMIT(R_type(0b0000000, rs2, rs1, 0b101, rd, 0b0111011))
// rd = rs1>>rs2 arithmetic
#define SRAW(rd, rs1, rs2) EMIT(R_type(0b0100000, rs2, rs1, 0b101, rd, 0b0111011))

#define SLLxw(rd, rs1, rs2)     \
    do {                        \
        if (rex.w) {            \
            SLL(rd, rs1, rs2);  \
        } else {                \
            SLLW(rd, rs1, rs2); \
            ZEROUP(rd);         \
        }                       \
    } while (0)

#define SRLxw(rd, rs1, rs2)     \
    do {                        \
        if (rex.w) {            \
            SRL(rd, rs1, rs2);  \
        } else {                \
            SRLW(rd, rs1, rs2); \
            ZEROUP(rd);         \
        }                       \
    } while (0)

#define SRAxw(rd, rs1, rs2)     \
    do {                        \
        if (rex.w) {            \
            SRA(rd, rs1, rs2);  \
        } else {                \
            SRAW(rd, rs1, rs2); \
            ZEROUP(rd);         \
        }                       \
    } while (0)

// Shift Left Immediate, 32-bit, sign-extended
#define SLLIW(rd, rs1, imm5) EMIT(I_type(imm5, rs1, 0b001, rd, 0b0011011))
// Shift Left Immediate
#define SLLIxw(rd, rs1, imm)     \
    do {                         \
        if (rex.w) {             \
            SLLI(rd, rs1, imm);  \
        } else {                 \
            SLLIW(rd, rs1, imm); \
            ZEROUP(rd);          \
        }                        \
    } while (0)
// Shift Right Logical Immediate, 32-bit, sign-extended
#define SRLIW(rd, rs1, imm5) EMIT(I_type(imm5, rs1, 0b101, rd, 0b0011011))
// Shift Right Logical Immediate
#define SRLIxw(rd, rs1, imm)            \
    do {                                \
        if (rex.w) {                    \
            SRLI(rd, rs1, imm);         \
        } else {                        \
            SRLIW(rd, rs1, imm);        \
            if ((imm) == 0) ZEROUP(rd); \
        }                               \
    } while (0)
// Shift Right Arithmetic Immediate, 32-bit, sign-extended
#define SRAIW(rd, rs1, imm5) EMIT(I_type((imm5) | (0b0100000 << 5), rs1, 0b101, rd, 0b0011011))
// Shift Right Arithmetic Immediate
#define SRAIxw(rd, rs1, imm)     \
    do {                         \
        if (rex.w) {             \
            SRAI(rd, rs1, imm);  \
        } else {                 \
            SRAIW(rd, rs1, imm); \
            ZEROUP(rd);          \
        }                        \
    } while (0)

#define CSRRW(rd, rs1, csr)  EMIT(I_type(csr, rs1, 0b001, rd, 0b1110011))
#define CSRRS(rd, rs1, csr)  EMIT(I_type(csr, rs1, 0b010, rd, 0b1110011))
#define CSRRC(rd, rs1, csr)  EMIT(I_type(csr, rs1, 0b011, rd, 0b1110011))
#define CSRRWI(rd, imm, csr) EMIT(I_type(csr, imm, 0b101, rd, 0b1110011))
#define CSRRSI(rd, imm, csr) EMIT(I_type(csr, imm, 0b110, rd, 0b1110011))
#define CSRRCI(rd, imm, csr) EMIT(I_type(csr, imm, 0b111, rd, 0b1110011))

// RV32M
// rd =(lower) rs1 * rs2 (both signed)
#define MUL(rd, rs1, rs2) EMIT(R_type(0b0000001, rs2, rs1, 0b000, rd, 0b0110011))
// rd =(upper) rs1 * rs2 (both signed)
#define MULH(rd, rs1, rs2) EMIT(R_type(0b0000001, rs2, rs1, 0b001, rd, 0b0110011))
// rd =(upper) (signed)rs1 * (unsigned)rs2
#define MULHSU(rd, rs1, rs2) EMIT(R_type(0b0000001, rs2, rs1, 0b010, rd, 0b0110011))
// rd =(upper) rs1 * rs2 (both unsigned)
#define MULHU(rd, rs1, rs2) EMIT(R_type(0b0000001, rs2, rs1, 0b011, rd, 0b0110011))
// rd =(upper) rs1 / rs2
#define DIV(rd, rs1, rs2)  EMIT(R_type(0b0000001, rs2, rs1, 0b100, rd, 0b0110011))
#define DIVU(rd, rs1, rs2) EMIT(R_type(0b0000001, rs2, rs1, 0b101, rd, 0b0110011))
// rd = rs1 mod rs2
#define REM(rd, rs1, rs2)  EMIT(R_type(0b0000001, rs2, rs1, 0b110, rd, 0b0110011))
#define REMU(rd, rs1, rs2) EMIT(R_type(0b0000001, rs2, rs1, 0b111, rd, 0b0110011))

// RV64M
// rd = rs1 * rs2
#define MULW(rd, rs1, rs2) EMIT(R_type(0b0000001, rs2, rs1, 0b000, rd, 0b0111011))
// rd = rs1 * rs2
#define MULxw(rd, rs1, rs2) EMIT(R_type(0b0000001, rs2, rs1, 0b000, rd, rex.w ? 0b0110011 : 0b0111011))
// rd = rs1 / rs2
#define DIVW(rd, rs1, rs2)   EMIT(R_type(0b0000001, rs2, rs1, 0b100, rd, 0b0111011))
#define DIVxw(rd, rs1, rs2)  EMIT(R_type(0b0000001, rs2, rs1, 0b100, rd, rex.w ? 0b0110011 : 0b0111011))
#define DIVUW(rd, rs1, rs2)  EMIT(R_type(0b0000001, rs2, rs1, 0b101, rd, 0b0111011))
#define DIVUxw(rd, rs1, rs2) EMIT(R_type(0b0000001, rs2, rs1, 0b101, rd, rex.w ? 0b0110011 : 0b0111011))
// rd = rs1 mod rs2
#define REMW(rd, rs1, rs2)   EMIT(R_type(0b0000001, rs2, rs1, 0b110, rd, 0b0111011))
#define REMxw(rd, rs1, rs2)  EMIT(R_type(0b0000001, rs2, rs1, 0b110, rd, rex.w ? 0b0110011 : 0b0111011))
#define REMUW(rd, rs1, rs2)  EMIT(R_type(0b0000001, rs2, rs1, 0b111, rd, 0b0111011))
#define REMUxw(rd, rs1, rs2) EMIT(R_type(0b0000001, rs2, rs1, 0b111, rd, rex.w ? 0b0110011 : 0b0111011))

#define AQ_RL(f5, aq, rl) ((f5 << 2) | ((aq & 1) << 1) | (rl & 1))

// RV32A
#define LR_W(rd, rs1, aq, rl)      EMIT(R_type(AQ_RL(0b00010, aq, rl), 0, rs1, 0b010, rd, 0b0101111))
#define SC_W(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b00011, aq, rl), rs2, rs1, 0b010, rd, 0b0101111))

#define AMOSWAP_W(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b00001, aq, rl), rs2, rs1, 0b010, rd, 0b0101111))
#define AMOADD_W(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b00000, aq, rl), rs2, rs1, 0b010, rd, 0b0101111))
#define AMOXOR_W(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b00100, aq, rl), rs2, rs1, 0b010, rd, 0b0101111))
#define AMOAND_W(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b01100, aq, rl), rs2, rs1, 0b010, rd, 0b0101111))
#define AMOOR_W(rd, rs2, rs1, aq, rl)   EMIT(R_type(AQ_RL(0b01000, aq, rl), rs2, rs1, 0b010, rd, 0b0101111))
#define AMOMIN_W(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b10000, aq, rl), rs2, rs1, 0b010, rd, 0b0101111))
#define AMOMAX_W(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b10100, aq, rl), rs2, rs1, 0b010, rd, 0b0101111))
#define AMOMINU_W(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b11000, aq, rl), rs2, rs1, 0b010, rd, 0b0101111))
#define AMOMAXU_W(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b11100, aq, rl), rs2, rs1, 0b010, rd, 0b0101111))

// RV64A
#define LR_D(rd, rs1, aq, rl)      EMIT(R_type(AQ_RL(0b00010, aq, rl), 0, rs1, 0b011, rd, 0b0101111))
#define SC_D(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b00011, aq, rl), rs2, rs1, 0b011, rd, 0b0101111))

#define LRxw(rd, rs1, aq, rl)      EMIT(R_type(AQ_RL(0b00010, aq, rl), 0, rs1, 0b010 | rex.w, rd, 0b0101111))
#define SCxw(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b00011, aq, rl), rs2, rs1, 0b010 | rex.w, rd, 0b0101111))

#define AMOSWAP_D(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b00001, aq, rl), rs2, rs1, 0b011, rd, 0b0101111))
#define AMOADD_D(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b00000, aq, rl), rs2, rs1, 0b011, rd, 0b0101111))
#define AMOXOR_D(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b00100, aq, rl), rs2, rs1, 0b011, rd, 0b0101111))
#define AMOAND_D(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b01100, aq, rl), rs2, rs1, 0b011, rd, 0b0101111))
#define AMOOR_D(rd, rs2, rs1, aq, rl)   EMIT(R_type(AQ_RL(0b01000, aq, rl), rs2, rs1, 0b011, rd, 0b0101111))
#define AMOMIN_D(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b10000, aq, rl), rs2, rs1, 0b011, rd, 0b0101111))
#define AMOMAX_D(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b10100, aq, rl), rs2, rs1, 0b011, rd, 0b0101111))
#define AMOMINU_D(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b11000, aq, rl), rs2, rs1, 0b011, rd, 0b0101111))
#define AMOMAXU_D(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b11100, aq, rl), rs2, rs1, 0b011, rd, 0b0101111))

#define AMOSWAPxw(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b00001, aq, rl), rs2, rs1, 0b010 | rex.w, rd, 0b0101111))
#define AMOADDxw(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b00000, aq, rl), rs2, rs1, 0b010 | rex.w, rd, 0b0101111))
#define AMOXORxw(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b00100, aq, rl), rs2, rs1, 0b010 | rex.w, rd, 0b0101111))
#define AMOANDxw(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b01100, aq, rl), rs2, rs1, 0b010 | rex.w, rd, 0b0101111))
#define AMOORxw(rd, rs2, rs1, aq, rl)   EMIT(R_type(AQ_RL(0b01000, aq, rl), rs2, rs1, 0b010 | rex.w, rd, 0b0101111))
#define AMOMINxw(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b10000, aq, rl), rs2, rs1, 0b010 | rex.w, rd, 0b0101111))
#define AMOMAXxw(rd, rs2, rs1, aq, rl)  EMIT(R_type(AQ_RL(0b10100, aq, rl), rs2, rs1, 0b010 | rex.w, rd, 0b0101111))
#define AMOMINUxw(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b11000, aq, rl), rs2, rs1, 0b010 | rex.w, rd, 0b0101111))
#define AMOMAXUxw(rd, rs2, rs1, aq, rl) EMIT(R_type(AQ_RL(0b11100, aq, rl), rs2, rs1, 0b010 | rex.w, rd, 0b0101111))

// RV32F
// Read round mode
#define FRRM(rd) CSRRS(rd, xZR, 0x002)
// Swap round mode
#define FSRM(rd, rs) CSRRW(rd, rs, 0x002)
// Write FP exception flags, immediate
#define FSFLAGSI(imm) CSRRWI(xZR, imm, 0x0001)
// Read  FP exception flags to rd
#define FRFLAGS(rd) CSRRS(rd, xZR, 0x0001)
// Inexact
#define FR_NX 0
// Underflow
#define FR_UF 1
// Overflow
#define FR_OF 2
// Divide by Zero
#define FR_DZ 3
// Invalid Operation
#define FR_NV 4

// Round to Nearest, ties to Even
#define RD_RNE 0b000
// Round towards Zero
#define RD_RTZ 0b001
// Round Down (towards −∞)
#define RD_RDN 0b010
// Round Up (towards +∞)
#define RD_RUP 0b011
// Round to Nearest, ties to Max Magnitude
#define RD_RMM 0b100
// In instruction’s rm field, selects dynamic rounding mode;
#define RD_RM  0b111
#define RD_DYN RD_RM

// load single precision from rs1+imm12 to frd
#define FLW(frd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b010, frd, 0b0000111))
// store single precision frs2 to rs1+imm12
#define FSW(frs2, rs1, imm12) EMIT(S_type(imm12, frs2, rs1, 0b010, 0b0100111))
// store rs1 with rs2 sign bit to rd
#define FSGNJS(rd, rs1, rs2) EMIT(R_type(0b0010000, rs2, rs1, 0b000, rd, 0b1010011))
// move rs1 to rd
#define FMVS(rd, rs1) FSGNJS(rd, rs1, rs1)
// store rs1 with opposite rs2 sign bit to rd
#define FSGNJNS(rd, rs1, rs2) EMIT(R_type(0b0010000, rs2, rs1, 0b001, rd, 0b1010011))
// -rs1 => rd
#define FNEGS(rd, rs1) FSGNJNS(rd, rs1, rs1)
// store rs1 with rs1^rs2 sign bit to rd
#define FSGNJXS(rd, rs1, rs2) EMIT(R_type(0b0010000, rs2, rs1, 0b010, rd, 0b1010011))
// |rs1| => rd
#define FABSS(rd, rs1) FSGNJXS(rd, rs1, rs1)
// Move from Single
#define FMVXW(rd, frs1) EMIT(R_type(0b1110000, 0b00000, frs1, 0b000, rd, 0b1010011))
// Move to Single
#define FMVWX(frd, rs1) EMIT(R_type(0b1111000, 0b00000, rs1, 0b000, frd, 0b1010011))
// Convert from signed 32bits to Single
#define FCVTSW(frd, rs1, rm) EMIT(R_type(0b1101000, 0b00000, rs1, rm, frd, 0b1010011))
// Convert from Single to signed 32bits (truncated)
#define FCVTWS(rd, frs1, rm) EMIT(R_type(0b1100000, 0b00000, frs1, rm, rd, 0b1010011))

#define FADDS(frd, frs1, frs2) EMIT(R_type(0b0000000, frs2, frs1, 0b111, frd, 0b1010011))
#define FSUBS(frd, frs1, frs2) EMIT(R_type(0b0000100, frs2, frs1, 0b111, frd, 0b1010011))
#define FMULS(frd, frs1, frs2) EMIT(R_type(0b0001000, frs2, frs1, 0b111, frd, 0b1010011))
#define FDIVS(frd, frs1, frs2) EMIT(R_type(0b0001100, frs2, frs1, 0b111, frd, 0b1010011))
#define FSQRTS(frd, frs1)      EMIT(R_type(0b0101100, 0b00000, frs1, 0b111, frd, 0b1010011))
#define FMINS(frd, frs1, frs2) EMIT(R_type(0b0010100, frs2, frs1, 0b000, frd, 0b1010011))
#define FMAXS(frd, frs1, frs2) EMIT(R_type(0b0010100, frs2, frs1, 0b001, frd, 0b1010011))

// compare
#define FEQS(rd, frs1, frs2) EMIT(R_type(0b1010000, frs2, frs1, 0b010, rd, 0b1010011))
#define FLTS(rd, frs1, frs2) EMIT(R_type(0b1010000, frs2, frs1, 0b001, rd, 0b1010011))
#define FLES(rd, frs1, frs2) EMIT(R_type(0b1010000, frs2, frs1, 0b000, rd, 0b1010011))

// RV64F
// Convert from signed 64bits to Single
#define FCVTSL(frd, rs1, rm) EMIT(R_type(0b1101000, 0b00010, rs1, rm, frd, 0b1010011))
// Convert from unsigned 64bits to Single
#define FCVTSLU(frd, rs1, rm) EMIT(R_type(0b1101000, 0b00011, rs1, rm, frd, 0b1010011))
// Convert from Single to signed 64bits
#define FCVTLS(rd, frs1, rm) EMIT(R_type(0b1100000, 0b00010, frs1, rm, rd, 0b1010011))
// Convert from Single to unsigned 64bits
#define FCVTLUS(rd, frs1, rm) EMIT(R_type(0b1100000, 0b00011, frs1, rm, rd, 0b1010011))
// Convert from Single to signed 32/64bits (truncated)
#define FCVTSxw(rd, frs1, rm) EMIT(R_type(0b1100000, rex.w ? 0b00010 : 0b00000, frs1, rm, rd, 0b1010011))

// RV32D
// load double precision from rs1+imm12 to frd
#define FLD(frd, rs1, imm12) EMIT(I_type(imm12, rs1, 0b011, frd, 0b0000111))
// store double precision frs2 to rs1+imm12
#define FSD(frs2, rs1, imm12) EMIT(S_type(imm12, frs2, rs1, 0b011, 0b0100111))
// Convert Double frs1 to Single frd
#define FCVTSD(frd, frs1) EMIT(R_type(0b0100000, 0b00001, frs1, 0b111, frd, 0b1010011))
// Convert Single frs1 to Double frd
#define FCVTDS(frd, frs1) EMIT(R_type(0b0100001, 0b00000, frs1, 0b111, frd, 0b1010011))
// Convert from Double to signed 32bits
#define FCVTWD(rd, frs1, rm) EMIT(R_type(0b1100001, 0b00000, frs1, rm, rd, 0b1010011))
// Convert from Double to unsigned 32bits
#define FCVTWUD(rd, frs1, rm) EMIT(R_type(0b1100001, 0b00001, frs1, rm, rd, 0b1010011))
// store rs1 with rs2 sign bit to rd
#define FSGNJD(rd, rs1, rs2) EMIT(R_type(0b0010001, rs2, rs1, 0b000, rd, 0b1010011))
// move rs1 to rd
#define FMVD(rd, rs1) FSGNJD(rd, rs1, rs1)
// store rs1 with opposite rs2 sign bit to rd
#define FSGNJND(rd, rs1, rs2) EMIT(R_type(0b0010001, rs2, rs1, 0b001, rd, 0b1010011))
// -rs1 => rd
#define FNEGD(rd, rs1) FSGNJND(rd, rs1, rs1)
// store rs1 with rs1^rs2 sign bit to rd
#define FSGNJXD(rd, rs1, rs2) EMIT(R_type(0b0010001, rs2, rs1, 0b010, rd, 0b1010011))
// |rs1| => rd
#define FABSD(rd, rs1) FSGNJXD(rd, rs1, rs1)
// Convert from signed 32bits to Double
#define FCVTDW(frd, rs1, rm) EMIT(R_type(0b1101001, 0b00000, rs1, rm, frd, 0b1010011))

#define FEQD(rd, frs1, frs2) EMIT(R_type(0b1010001, frs2, frs1, 0b010, rd, 0b1010011))
#define FLTD(rd, frs1, frs2) EMIT(R_type(0b1010001, frs2, frs1, 0b001, rd, 0b1010011))
#define FLED(rd, frs1, frs2) EMIT(R_type(0b1010001, frs2, frs1, 0b000, rd, 0b1010011))

#define FADDD(frd, frs1, frs2) EMIT(R_type(0b0000001, frs2, frs1, 0b111, frd, 0b1010011))
#define FSUBD(frd, frs1, frs2) EMIT(R_type(0b0000101, frs2, frs1, 0b111, frd, 0b1010011))
#define FMULD(frd, frs1, frs2) EMIT(R_type(0b0001001, frs2, frs1, 0b111, frd, 0b1010011))
#define FDIVD(frd, frs1, frs2) EMIT(R_type(0b0001101, frs2, frs1, 0b111, frd, 0b1010011))
#define FSQRTD(frd, frs1)      EMIT(R_type(0b0101101, 0b00000, frs1, 0b111, frd, 0b1010011))
#define FMIND(frd, frs1, frs2) EMIT(R_type(0b0010101, frs2, frs1, 0b000, frd, 0b1010011))
#define FMAXD(frd, frs1, frs2) EMIT(R_type(0b0010101, frs2, frs1, 0b001, frd, 0b1010011))

// RV64D
//  Move from Double
#define FMVXD(rd, frs1) EMIT(R_type(0b1110001, 0b00000, frs1, 0b000, rd, 0b1010011))
// Move to Double
#define FMVDX(frd, rs1) EMIT(R_type(0b1111001, 0b00000, rs1, 0b000, frd, 0b1010011))
// Convert from signed 64bits to Double
#define FCVTDL(frd, rs1, rm) EMIT(R_type(0b1101001, 0b00010, rs1, rm, frd, 0b1010011))
// Convert from unsigned 64bits to Double
#define FCVTDLU(frd, rs1, rm) EMIT(R_type(0b1101001, 0b00011, rs1, rm, frd, 0b1010011))
// Convert from Double to signed 64bits
#define FCVTLD(rd, frs1, rm) EMIT(R_type(0b1100001, 0b00010, frs1, rm, rd, 0b1010011))
// Convert from Double to unsigned 64bits
#define FCVTLUD(rd, frs1, rm) EMIT(R_type(0b1100001, 0b00011, frs1, rm, rd, 0b1010011))

// Convert from Double to signed integer
#define FCVTLDxw(rd, frs1, rm) EMIT(R_type(0b1100001, 0b00000 + (rex.w ? 0b10 : 0b00), frs1, rm, rd, 0b1010011))
// Convert from Double to unsigned integer
#define FCVTLUDxw(rd, frs1, rm) EMIT(R_type(0b1100001, 0b00001 + (rex.w ? 0b10 : 0b00), frs1, rm, rd, 0b1010011))

#define FMV(frd, frs1, single) \
    do {                       \
        if (single)            \
            FMVS(frd, frs1);   \
        else                   \
            FMVD(frd, frs1);   \
    } while (0)

// Zba
//  Add unsigned word (Wz(rs1) + X(rs2))
#define ADDUW(rd, rs1, rs2) EMIT(R_type(0b0000100, rs2, rs1, 0b000, rd, 0b0111011))
// Zero-extend Word
#define ZEXTW(rd, rs1) ADDUW(rd, rs1, xZR)
// Shift left by 1 and add (rd = X(rs2) + X(rs1)<<1)
#define SH1ADD(rd, rs1, rs2) EMIT(R_type(0b0010000, rs2, rs1, 0b010, rd, 0b0110011))
// Shift unsigned word left by 1 and add (rd = X(rs2) + Wz(rs1)<<1)
#define SH1ADDUW(rd, rs1, rs2) EMIT(R_type(0b0010000, rs2, rs1, 0b010, rd, 0b0111011))
// Shift left by 2 and add (rd = X(rs2) + X(rs1)<<2)
#define SH2ADD(rd, rs1, rs2) EMIT(R_type(0b0010000, rs2, rs1, 0b100, rd, 0b0110011))
// Shift unsigned word left by 2 and add (rd = X(rs2) + Wz(rs1)<<2)
#define SH2ADDUW(rd, rs1, rs2) EMIT(R_type(0b0010000, rs2, rs1, 0b100, rd, 0b0111011))
// Shift left by 3 and add (rd = X(rs2) + X(rs1)<<3)
#define SH3ADD(rd, rs1, rs2) EMIT(R_type(0b0010000, rs2, rs1, 0b110, rd, 0b0110011))
// Shift unsigned word left by 3 and add (rd = X(rs2) + Wz(rs1)<<3)
#define SH3ADDUW(rd, rs1, rs2) EMIT(R_type(0b0010000, rs2, rs1, 0b110, rd, 0b0111011))
// Shift left unsigned word (immediate)
#define SLLIUW(rd, rs1, imm) EMIT(R_type(0b0000100, imm, rs1, 0b001, rd, 0b0011011))
// Shift left by 1,2 or 3 and add (rd = X(rs2) + X(rs1)<<x)
#define SHxADD(rd, rs1, x, rs2) EMIT(R_type(0b0010000, rs2, rs1, (x) << 1, rd, 0b0110011))
// Shift unsigned word left by 1,2 or 3 and add (rd = X(rs2) + Wz(rs1)<<x)
#define SHxADDUW(rd, rs1, x, rs2) EMIT(R_type(0b0010000, rs2, rs1, (x) << 1, rd, 0b0111011))

// Zbb
//  AND with reverted operand (rs1 & ~rs2)
#define ANDN(rd, rs1, rs2) EMIT(R_type(0b0100000, rs2, rs1, 0b111, rd, 0b0110011))
// OR with reverted operand (rs1 | ~rs2)
#define ORN(rd, rs1, rs2) EMIT(R_type(0b0100000, rs2, rs1, 0b110, rd, 0b0110011))
// Exclusive NOR (~(rs1 ^ rs2))
#define XNOR(rd, rs1, rs2) EMIT(R_type(0b0100000, rs2, rs1, 0b100, rd, 0b0110011))
// Count leading zero bits
#define CLZ(rd, rs) EMIT(R_type(0b0110000, 0b00000, rs, 0b001, rd, 0b0010011))
// Count leading zero bits in word
#define CLZW(rd, rs) EMIT(R_type(0b0110000, 0b00000, rs, 0b001, rd, 0b0011011))
// Count leading zero bits
#define CLZxw(rd, rs, x, s1, s2, s3)  \
    if (cpuext.zbb) {                 \
        if (x)                        \
            CLZ(rd, rs);              \
        else                          \
            CLZW(rd, rs);             \
    } else if (cpuext.xtheadbb) {     \
        if (x) {                      \
            TH_FF1(rd, rs);           \
        } else {                      \
            ZEXTW2(rd, rs);           \
            TH_FF1(rd, rd);           \
            SUBI(rd, rd, 32);         \
        }                             \
    } else {                          \
        if (rs != rd)                 \
            u8 = rd;                  \
        else                          \
            u8 = s1;                  \
        ADDI(u8, xZR, x ? 63 : 31);   \
        if (x) {                      \
            MV(s2, rs);               \
            SRLI(s3, s2, 32);         \
            BEQZ(s3, 4 + 2 * 4);      \
            SUBI(u8, u8, 32);         \
            MV(s2, s3);               \
        } else {                      \
            ZEXTW2(s2, rs);           \
        }                             \
        SRLI(s3, s2, 16);             \
        BEQZ(s3, 4 + 2 * 4);          \
        SUBI(u8, u8, 16);             \
        MV(s2, s3);                   \
        SRLI(s3, s2, 8);              \
        BEQZ(s3, 4 + 2 * 4);          \
        SUBI(u8, u8, 8);              \
        MV(s2, s3);                   \
        SRLI(s3, s2, 4);              \
        BEQZ(s3, 4 + 2 * 4);          \
        SUBI(u8, u8, 4);              \
        MV(s2, s3);                   \
        ANDI(s2, s2, 0b1111);         \
        TABLE64C(s3, const_lead0tab); \
        ADD(s3, s3, s2);              \
        LBU(s2, s3, 0);               \
        SUB(rd, u8, s2);              \
    }

// Count trailing zero bits
#define CTZ(rd, rs) EMIT(R_type(0b0110000, 0b00001, rs, 0b001, rd, 0b0010011))
// Count trailing zero bits in word
#define CTZW(rd, rs) EMIT(R_type(0b0110000, 0b00001, rs, 0b001, rd, 0b0011011))
// Count trailing zero bits
// BEWARE: You should take care of the all zeros situation yourself,
//         and clear the high 32bit when x is 1.
#define CTZxw(rd, rs, x, s1, s2)             \
    if (cpuext.zbb) {                        \
        if (x)                               \
            CTZ(rd, rs);                     \
        else                                 \
            CTZW(rd, rs);                    \
    } else {                                 \
        NEG(s2, rs);                         \
        AND(s2, s2, rs);                     \
        TABLE64_(s1, 0x03f79d71b4ca8b09ULL); \
        MUL(s2, s2, s1);                     \
        SRLI(s2, s2, 64 - 6);                \
        TABLE64C(s1, const_deBruijn64tab);   \
        ADD(s1, s1, s2);                     \
        LBU(rd, s1, 0);                      \
    }

// Count set bits
#define CPOP(rd, rs) EMIT(R_type(0b0110000, 0b00010, rs, 0b001, rd, 0b0010011))
// Count set bits in word
#define CPOPW(rd, rs) EMIT(R_type(0b0110000, 0b00010, rs, 0b001, rd, 0b0011011))
// Count set bits
#define CPOPxw(rd, rs) EMIT(R_type(0b0110000, 0b00010, rs, 0b001, rd, rex.w ? 0b0010011 : 0b0011011))
// Maximum
#define MAX(rd, rs1, rs2) EMIT(R_type(0b0000101, rs2, rs1, 0b110, rd, 0b0110011))
// Unisgned maximum
#define MAXU(rd, rs1, rs2) EMIT(R_type(0b0000101, rs2, rs1, 0b111, rd, 0b0110011))
// Minimum
#define MIN(rd, rs1, rs2) EMIT(R_type(0b0000101, rs2, rs1, 0b100, rd, 0b0110011))
// Unsigned minimum
#define MINU(rd, rs1, rs2) EMIT(R_type(0b0000101, rs2, rs1, 0b101, rd, 0b0110011))
// Sign-extend byte
#define SEXTB(rd, rs) EMIT(R_type(0b0110000, 0b00100, rs, 0b001, rd, 0b0010011))
// Sign-extend half-word
#define SEXTH_(rd, rs) EMIT(R_type(0b0110000, 0b00101, rs, 0b001, rd, 0b0010011))
// Sign-extend half-word
#define SEXTH(rd, rs)          \
    if (cpuext.zbb)            \
        SEXTH_(rd, rs);        \
    else if (cpuext.xtheadbb)  \
        TH_EXT(rd, rs, 15, 0); \
    else {                     \
        SLLI(rd, rs, 48);      \
        SRAI(rd, rd, 48);      \
    }
// Zero-extend half-word
#define ZEXTH_(rd, rs) EMIT(R_type(0b0000100, 0b00000, rs, 0b100, rd, 0b0111011))
// Zero-extend half-word
#define ZEXTH(rd, rs)           \
    if (cpuext.zbb)             \
        ZEXTH_(rd, rs);         \
    else if (cpuext.xtheadbb)   \
        TH_EXTU(rd, rs, 15, 0); \
    else {                      \
        SLLI(rd, rs, 48);       \
        SRLI(rd, rd, 48);       \
    }

// Insert low 16bits in rs to low 16bits of rd
#define INSH(rd, rs, s1, s2, init_s1, zexth_rs) \
    if (init_s1) LUI(s1, 0xffff0);              \
    AND(rd, rd, s1);                            \
    if (zexth_rs) {                             \
        ZEXTH(s2, rs);                          \
        OR(rd, rd, s2);                         \
    } else {                                    \
        OR(rd, rd, rs);                         \
    }

// Insert low 16bits in rs to low 16bits of rd
#define INSHz(rd, rs, s1, s2, init_s1, zexth_rs) \
    INSH(rd, rs, s1, s2, init_s1, zexth_rs)      \
    if (rex.is32bits) ZEXTW2(rd, rd);

// Rotate left (register)
#define ROL(rd, rs1, rs2) EMIT(R_type(0b0110000, rs2, rs1, 0b001, rd, 0b0110011))
// Rotate left word (register)
#define ROLW(rd, rs1, rs2) EMIT(R_type(0b0110000, rs2, rs1, 0b001, rd, 0b0111011))
// Rotate left (register)
#define ROLxw(rd, rs1, rs2) EMIT(R_type(0b0110000, rs2, rs1, 0b001, rd, rex.w ? 0b0110011 : 0b0111011))
// Rotate right (register)
#define ROR(rd, rs1, rs2) EMIT(R_type(0b0110000, rs2, rs1, 0b101, rd, 0b0110011))
// Rotate right (immediate)
#define RORI(rd, rs1, shamt) EMIT(I_type((shamt) | (0b011000 << 6), rs1, 0b101, rd, 0b0010011))
// Rotate right word (immediate)
#define RORIW(rd, rs1, shamt) EMIT(R_type(0b0110000, shamt, rs1, 0b101, rd, 0b0011011))
// Rotate right (immediate)
#define RORIxw(rd, rs1, shamt) EMIT(R_type(0b0110000, shamt, rs1, 0b101, rd, rex.w ? 0b0010011 : 0b0011011))
// Rotate right word (register)
#define RORW(rd, rs1, rs2) EMIT(R_type(0b0110000, rs2, rs1, 0b101, rd, 0b0111011))
// Rotate right (register)
#define RORxw(rd, rs1, rs2) EMIT(R_type(0b0110000, rs2, rs1, 0b101, rd, rex.w ? 0b0110011 : 0b0111011))
// Bitwise OR Combine, byte granule (for all byte, if byte==0, res.byte=0, else res.byte=0xff)
#define ORCB(rd, rs) EMIT(I_type(0b001010000111, rs, 0b101, rd, 0b0010011))
// Byte-reverse register
#define REV8(rd, rs) EMIT(I_type(0b011010111000, rs, 0b101, rd, 0b0010011))

// Byte-reverse register, rd can be the same as rs or s1, but rs cannot be the same as s1.
#define REV8xw(rd, rs, s1, s2, s3, s4) \
    if (cpuext.zbb) {                  \
        REV8(rd, rs);                  \
        if (!rex.w) {                  \
            SRLI(rd, rd, 32);          \
        }                              \
    } else if (cpuext.xtheadbb) {      \
        if (rex.w) {                   \
            TH_REV(rd, rs);            \
        } else {                       \
            TH_REVW(rd, rs);           \
        }                              \
    } else {                           \
        MOV_U12(s2, 0xff);             \
        if (rex.w) {                   \
            SLLI(s1, rs, 56);          \
            SRLI(s3, rs, 56);          \
            SRLI(s4, rs, 40);          \
            SLLI(s2, s2, 8);           \
            AND(s4, s4, s2);           \
            OR(s1, s1, s3);            \
            OR(s1, s1, s4);            \
            SLLI(s3, rs, 40);          \
            SLLI(s4, s2, 40);          \
            AND(s3, s3, s4);           \
            OR(s1, s1, s3);            \
            SRLI(s3, rs, 24);          \
            SLLI(s4, s2, 8);           \
            AND(s3, s3, s4);           \
            OR(s1, s1, s3);            \
            SLLI(s3, rs, 24);          \
            SLLI(s4, s2, 32);          \
            AND(s3, s3, s4);           \
            OR(s1, s1, s3);            \
            SRLI(s3, rs, 8);           \
            SLLI(s4, s2, 16);          \
            AND(s3, s3, s4);           \
            OR(s1, s1, s3);            \
            SLLI(s3, rs, 8);           \
            SLLI(s4, s2, 24);          \
            AND(s3, s3, s4);           \
            OR(rd, s1, s3);            \
        } else {                       \
            SLLIW(s2, s2, 8);          \
            SLLIW(s1, rs, 24);         \
            SRLIW(s3, rs, 24);         \
            SRLIW(s4, rs, 8);          \
            AND(s4, s4, s2);           \
            OR(s1, s1, s3);            \
            OR(s1, s1, s4);            \
            SLLIW(s3, rs, 8);          \
            LUI(s2, 0xff0);            \
            AND(s3, s3, s2);           \
            OR(rd, s1, s3);            \
        }                              \
    }                                  \
    if (!rex.w)                        \
        ZEXTW2(rd, rd);


// Zbc
//  Carry-less multiply (low-part)
#define CLMUL(rd, rs1, rs2) EMIT(R_type(0b0000101, rs2, rs1, 0b001, rd, 0b0110011))
// Carry-less multiply (high-part)
#define CLMULH(rd, rs1, rs2) EMIT(R_type(0b0000101, rs2, rs1, 0b011, rd, 0b0110011))
// Carry-less multiply (reversed)
#define CLMULR(rd, rs1, rs2) EMIT(R_type(0b0000101, rs2, rs1, 0b010, rd, 0b0110011))

// Zbs
//  encoding of the "imm" on RV64 use a slight different mask, but it will work using R_type with high bit of imm overwriting low bit op func
//  Single-bit Clear (Register)
#define BCLR(rd, rs1, rs2) EMIT(R_type(0b0100100, rs2, rs1, 0b001, rd, 0b0110011))
// Single-bit Clear (Immediate)
#define BCLI(rd, rs1, imm) EMIT(R_type(0b0100100, imm, rs1, 0b001, rd, 0b0010011))
// Single-bit Extract (Register)
#define BEXT_(rd, rs1, rs2) EMIT(R_type(0b0100100, rs2, rs1, 0b101, rd, 0b0110011))
// Single-bit Extract (Immediate)
#define BEXTI_(rd, rs1, shamt) EMIT(I_type((shamt) | (0b010010 << 6), rs1, 0b101, rd, 0b0010011))
// Single-bit Invert (Register)
#define BINV(rd, rs1, rs2) EMIT(R_type(0b0110100, rs2, rs1, 0b001, rd, 0b0110011))
// Single-bit Invert (Immediate)
#define BINVI(rd, rs1, imm) EMIT(R_type(0b0110100, imm, rs1, 0b001, rd, 0b0010011))
// Single-bit Set (Register)
#define BSET(rd, rs1, rs2) EMIT(R_type(0b0010100, rs2, rs1, 0b001, rd, 0b0110011))
// Single-bit Set (Immediate)
#define BSETI(rd, rs1, imm) EMIT(R_type(0b0010100, imm, rs1, 0b001, rd, 0b0010011))

// Single-bit Extract (Register)
#define BEXT(rd, rs1, rs2, s0)              \
    if (cpuext.zbs) {                       \
        if (rex.w) {                        \
            BEXT_(rd, rs1, rs2);            \
        } else {                            \
            ANDI(s0, rs2, 0x1f);            \
            BEXT_(rd, rs1, s0);             \
        }                                   \
    } else {                                \
        ANDI(s0, rs2, rex.w ? 0x3f : 0x1f); \
        SRL(rd, rs1, s0);                   \
        ANDI(rd, rd, 1);                    \
    }

// Single-bit Extract (Immediate)
#define BEXTI(rd, rs1, imm)   \
    if (cpuext.zbs)           \
        BEXTI_(rd, rs1, imm); \
    else if (cpuext.xtheadbs) \
        TH_TST(rd, rs1, imm); \
    else {                    \
        SRLIxw(rd, rs1, imm); \
        ANDI(rd, rd, 1);      \
    }

/// THead vendor extension
/// https://github.com/T-head-Semi/thead-extension-spec/releases

// XTheadBa - Address calculation instructions

// Add a shifted operand to a second operand.
// reg[rd] := reg[rs1] + (reg[rs2] << imm2)
#define TH_ADDSL(rd, rs1, rs2, imm2) EMIT(R_type((imm2) & 0b11, rs2, rs1, 0b001, rd, 0b0001011))

// XTheadBb - Basic bit-manipulation

#define TH_SRRIxw(rd, rs1, imm) \
    if (rex.w) {                \
        TH_SRRI(rd, rs1, imm);  \
    } else {                    \
        TH_SRRIW(rd, rs1, imm); \
    }

// Perform a cyclic right shift.
// reg[rd] := (reg[rs1] >> imm6) | (reg[rs1] << (xlen - imm6))
#define TH_SRRI(rd, rs1, imm6) EMIT(I_type(0b000100000000 | ((imm6) & 0x3f), rs1, 0b001, rd, 0b0001011))

// Perform a cyclic right shift on word operand.
// data := zext.w(reg[rs1])
// reg[rd] := (data >> imm5) | (data << (32 - imm5))
#define TH_SRRIW(rd, rs1, imm5) EMIT(I_type(0b000101000000 | ((imm5) & 0x1f), rs1, 0b001, rd, 0b0001011))

// Extract and sign-extend bits.
// reg[rd] := sign_extend(reg[rs1][imm1:imm2])
#define TH_EXT(rd, rs1, imm1, imm2) EMIT(I_type((((imm1) & 0x3f) << 6) | ((imm2) & 0x3f), rs1, 0b010, rd, 0b0001011))

// Extract and zero-extend bits.
// reg[rd] := zero_extend(reg[rs1][imm1:imm2])
#define TH_EXTU(rd, rs1, imm1, imm2) EMIT(I_type((((imm1) & 0x3f) << 6) | ((imm2) & 0x3f), rs1, 0b011, rd, 0b0001011))

// Find first '0'-bit
// for i=xlen..0:
//   if reg[rs1][i] == 0:
//     break;
// reg[rd] = (xlen - 1) - i
#define TH_FF0(rd, rs1) EMIT(I_type(0b100001000000, rs1, 0b001, rd, 0b0001011))

// Find first '1'-bit
// for i=xlen..0:
//   if reg[rs1][i] == 1:
//     break;
// reg[rd] = (xlen - 1) - i
#define TH_FF1(rd, rs1) EMIT(I_type(0b100001100000, rs1, 0b001, rd, 0b0001011))

// Reverse the byte order.
// for i=0..(xlen/8-1):
//   j := xlen/8 - 1 - i
//   tmp[i] := reg[rs1][j]
// reg[rd] := tmp
#define TH_REV(rd, rs1) EMIT(I_type(0b100000100000, rs1, 0b001, rd, 0b0001011))

// Reverse the byte order of a word operand.
// for i=0..3:
//   j := 3 - i
//   tmp[i] := reg[rs1][j]
// reg[rd] := tmp
#define TH_REVW(rd, rs1) EMIT(I_type(0b100100000000, rs1, 0b001, rd, 0b0001011))

// Test for NUL bytes.
// for i=0..(xlen/8-1):
//   if reg[rs1][i] == 0:
//     reg[rd][i] := 0xff
//   else
//     reg[rd][i] := 0
#define TH_TSTNBZ(rd, rs1) EMIT(I_type(0b100000000000, rs1, 0b001, rd, 0b0001011))

// XTheadBs - Single-bit instructions

// Tests if a single bit is set.
// if (reg[rs1] & (1 << imm6))
//   rd := 1
// else
//   rd := 0
#define TH_TST(rd, rs1, imm6) EMIT(I_type(0b100010000000 | ((imm6) & 0x3f), rs1, 0b001, rd, 0b0001011))


// XTheadCondMov -  Conditional move

// Move if equal zero.
// if (reg[rs2] == 0x0)
//   reg[rd] := reg[rs1]
#define TH_MVEQZ(rd, rs1, rs2) EMIT(R_type(0b0100000, rs2, rs1, 0b001, rd, 0b0001011))

// Move if not equal zero.
// if (reg[rs2] != 0x0)
//   reg[rd] := reg[rs1]
#define TH_MVNEZ(rd, rs1, rs2) EMIT(R_type(0b0100001, rs2, rs1, 0b001, rd, 0b0001011))

// XTheadMemIdx -  Indexed memory operations

// Load indexed byte, increment address after loading.
// rd := sign_extend(mem[rs1])
// rs1 := rs1 + (sign_extend(imm5) << imm2)
#define TH_LBIA(rd, rs1, imm5, imm2) EMIT(I_type(0b000110000000 | (((imm2) & 0b11) << 5) | ((imm5) & 0x1f), rs1, 0b100, rd, 0b0001011))

// Load indexed half-word, increment address after loading.
// if (rs1 != rd) {
//     rd := sign_extend(mem[rs1+1:rs1])
//     rs1 := rs1 + (sign_extend(imm5) << imm2)
// }
#define TH_LHIA(rd, rs1, imm5, imm2) EMIT(I_type(0b001110000000 | (((imm2) & 0b11) << 5) | ((imm5) & 0x1f), rs1, 0b100, rd, 0b0001011))

// Load indexed unsigned half-word, increment address after loading.
// if (rs1 != rd) {
//     rd := zero_extend(mem[rs1+1:rs1])
//     rs1 := rs1 + (sign_extend(imm5) << imm2)
// }
#define TH_LHUIA(rd, rs1, imm5, imm2) EMIT(I_type(0b101110000000 | (((imm2) & 0b11) << 5) | ((imm5) & 0x1f), rs1, 0b100, rd, 0b0001011))

// Load indexed word, increment address after loading.
// if (rs1 != rd) {
//     rd := sign_extend(mem[rs1+3:rs1])
//     rs1 := rs1 + (sign_extend(imm5) << imm2)
// }
#define TH_LWIA(rd, rs1, imm5, imm2) EMIT(I_type(0b010110000000 | (((imm2) & 0b11) << 5) | ((imm5) & 0x1f), rs1, 0b100, rd, 0b0001011))

// Load indexed unsigned word, increment address after loading.
// if (rs1 != rd) {
//     rd := zero_extend(mem[rs1+3:rs1])
//     rs1 := rs1 + (sign_extend(imm5) << imm2)
// }
#define TH_LWUIA(rd, rs1, imm5, imm2) EMIT(I_type(0b110110000000 | (((imm2) & 0b11) << 5) | ((imm5) & 0x1f), rs1, 0b100, rd, 0b0001011))

// Load indexed double-word, increment address after loading.
// if (rs1 != rd) {
//     rd := sign_extend(mem[rs1+7:rs1])
//     rs1 := rs1 + (sign_extend(imm5) << imm2)
// }
#define TH_LDIA(rd, rs1, imm5, imm2) EMIT(I_type(0b011110000000 | (((imm2) & 0b11) << 5) | ((imm5) & 0x1f), rs1, 0b100, rd, 0b0001011))

// Store indexed half-word, increment address before storage.
// rs1 := rs1 + (sign_extend(imm5) << imm2)
// mem[rs1+1:rs1] := rd
#define TH_SHIB(rd, rs1, imm5, imm2) EMIT(I_type(0b001010000000 | (((imm2) & 0b11) << 5) | ((imm5) & 0x1f), rs1, 0b101, rd, 0b0001011))

// Store indexed word, increment address before storage.
// rs1 := rs1 + (sign_extend(imm5) << imm2)
// mem[rs1+3:rs1] := rd
#define TH_SWIB(rd, rs1, imm5, imm2) EMIT(I_type(0b010010000000 | (((imm2) & 0b11) << 5) | ((imm5) & 0x1f), rs1, 0b101, rd, 0b0001011))

// Store indexed double-word, increment address before storage.
// rs1 := rs1 + (sign_extend(imm5) << imm2)
// mem[rs1+7:rs1] := rd
#define TH_SDIB(rd, rs1, imm5, imm2) EMIT(I_type(0b011010000000 | (((imm2) & 0b11) << 5) | ((imm5) & 0x1f), rs1, 0b101, rd, 0b0001011))

// Load indexed word.
// addr := rs1 + (rs2 << imm2)
// rd := sign_extend(mem[addr+7:addr])
#define TH_LRD(rd, rs1, rs2, imm2) EMIT(R_type(0b0110000 | ((imm2) & 0b11), rs2, rs1, 0b100, rd, 0b0001011))

// TODO
// th.lbib rd, (rs1), imm5, imm2 Load indexed byte
// th.lbuia rd, (rs1), imm5, imm2 Load indexed unsigned byte
// th.lbuib rd, (rs1), imm5, imm2 Load indexed unsigned byte
// th.lhia rd, (rs1), imm5, imm2 Load indexed half-word
// th.lhib rd, (rs1), imm5, imm2 Load indexed half-word
// th.lhuib rd, (rs1), imm5, imm2 Load indexed unsigned half-word
// th.lwia rd, (rs1), imm5, imm2 Load indexed word
// th.lwib rd, (rs1), imm5, imm2 Load indexed word
// th.lwuib rd, (rs1), imm5, imm2 Load indexed unsigned word
// th.ldib rd, (rs1), imm5, imm2 Load indexed double-word
// th.sbia rd, (rs1), imm5, imm2 Store indexed byte
// th.sbib rd, (rs1), imm5, imm2 Store indexed byte
// th.shia rd, (rs1), imm5, imm2 Store indexed half-word
// th.shib rd, (rs1), imm5, imm2 Store indexed half-word
// th.swia rd, (rs1), imm5, imm2 Store indexed word
// th.swib rd, (rs1), imm5, imm2 Store indexed word
// th.sdia rd, (rs1), imm5, imm2 Store indexed double-word
// th.lrb rd, rs1, rs2, imm2 Load indexed byte
// th.lrbu rd, rs1, rs2, imm2 Load indexed unsigned byte
// th.lrh rd, rs1, rs2, imm2 Load indexed half-word
// th.lrhu rd, rs1, rs2, imm2 Load indexed unsigned half-word
// th.lrw rd, rs1, rs2, imm2 Load indexed word
// th.lrwu rd, rs1, rs2, imm2 Load indexed unsigned word
// th.srb rd, rs1, rs2, imm2 Store indexed byte
// th.srh rd, rs1, rs2, imm2 Store indexed half-word
// th.srw rd, rs1, rs2, imm2 Store indexed word
// th.srd rd, rs1, rs2, imm2 Store indexed double-word
// th.lurb rd, rs1, rs2, imm2 Load unsigned indexed byte
// th.lurbu rd, rs1, rs2, imm2 Load unsigned indexed unsigned byte
// th.lurh rd, rs1, rs2, imm2 Load unsigned indexed half-word
// th.lurhu rd, rs1, rs2, imm2 Load unsigned indexed unsigned half-word
// th.lurw rd, rs1, rs2, imm2 Load unsigned indexed word
// th.lurwu rd, rs1, rs2, imm2 Load unsigned indexed unsigned word
// th.lurd rd, rs1, rs2, imm2 Load unsigned indexed double-word
// th.surb rd, rs1, rs2, imm2 Store unsigned indexed byte
// th.surh rd, rs1, rs2, imm2 Store unsigned indexed half-word
// th.surw rd, rs1, rs2, imm2 Store unsigned indexed word
// th.surd rd, rs1, rs2, imm2 Store unsigned indexed double-word

// XTheadMemPair - Two-GPR memory operations


// Load two 64-bit values from memory into two GPRs.
// addr := rs1 + (zero_extend(imm2) << 4)
// rd1 := mem[addr+7:addr]
// rd2 := mem[addr+15:addr+8]
#define TH_LDD(rd1, rd2, rs1, imm2) EMIT(R_type(0b1111100 | ((imm2) & 0b11), rd2, rs1, 0b100, rd1, 0b0001011))

// Load two signed 32-bit values from memory into two GPRs.
// addr := rs1 + (zero_extend(imm2) << 3)
// reg[rd1] := sign_extend(mem[addr+3:addr])
// reg[rd2] := sign_extend(mem[addr+7:addr+4])
#define TH_LWD(rd1, rd2, rs1, imm2) EMIT(R_type(0b1110000 | ((imm2) & 0b11), rd2, rs1, 0b100, rd1, 0b0001011))

// Load two unsigned 32-bit values from memory into two GPRs.
// addr := rs1 + (zero_extend(imm2) << 3)
// reg[rd1] := zero_extend(mem[addr+3:addr])
// reg[rd2] := zero_extend(mem[addr+7:addr+4])
#define TH_LWUD(rd1, rd2, rs1, imm2) EMIT(R_type(0b1111000 | ((imm2) & 0b11), rd2, rs1, 0b100, rd1, 0b0001011))

// Store two 64-bit values to memory from two GPRs.
// addr := rs1 + (zero_extend(imm2) << 4)
// mem[addr+7:addr] := reg[rd1]
// mem[addr+15:addr+8] := reg[rd2]
#define TH_SDD(rd1, rd2, rs1, imm2) EMIT(R_type(0b1111100 | ((imm2) & 0b11), rd2, rs1, 0b101, rd1, 0b0001011))

// Store two 32-bit values to memory from two GPRs.
// addr := rs1 + (zero_extend(imm2) << 3)
// mem[addr+3:addr] := reg[rd1][31:0]
// mem[addr+7:addr+3] := reg[rd2][31:0]
#define TH_SWD(rd1, rd2, rs1, imm2) EMIT(R_type(0b1110000 | ((imm2) & 0b11), rd2, rs1, 0b101, rd1, 0b0001011))

// XTheadFMemIdx - Indexed memory operations for floating-point registers

// Load indexed double-precision floating point value.
// addr := rs1 + (rs2 << imm2)
// rd := fmem[addr+7:addr]
#define TH_FLRD(rd, rs1, rs2, imm2) EMIT(R_type(0b0110000 | ((imm2) & 0b11), rs2, rs1, 0b110, rd, 0b0001011))

// TODO
// th.flrw rd, rs1, rs2, imm2 Load indexed float
// th.flurd rd, rs1, rs2, imm2 Load unsigned indexed double
// th.flurw rd, rs1, rs2, imm2 Load unsigned indexed float
// th.fsrd rd, rs1, rs2, imm2 Store indexed double
// th.fsrw rd, rs1, rs2, imm2 Load indexed float
// th.fsurd rd, rs1, rs2, imm2 Store unsigned indexed double
// th.fsurw rd, rs1, rs2, imm2 Load unsigned indexed float

// XTheadMac - Multiply-accumulate instructions

// Compute multiply-add result of double-word operands.
// M := reg[rs1] * reg[rs2]
// reg[rd] := reg[rd] + M
#define TH_MULA(rd, rs1, rs2) EMIT(R_type(0b0010000, rs2, rs1, 0b001, rd, 0b0001011))

// TODO
// th.mulah rd, rs1, rs2 Multiply-add half-words
// th.mulaw rd, rs1, rs2 Multiply-add words
// th.muls rd, rs1, rs2 Multiply-subtract double-words
// th.mulsh rd, rs1, rs2 Multiply-subtract half-words
// th.mulsw rd, rs1, rs2 Multiply-subtract words

// XTheadFmv - Double-precision floating-point high-bit data transmission instructions

// Read double-precision floating-point high-bit data
// rd := fs1[63:32]
#define TH_FMV_X_HW(rd, fs1) EMIT(R_type(0b1100000, 0, fs1, 0b001, rd, 0b0001011))

// Write double-precision floating-point high-bit data
// fs1[63:32] := rd
#define TH_FMV_HW_X(rd, fs1) EMIT(R_type(0b1010000, 0, fs1, 0b001, rd, 0b0001011))

// Vector extension emitter

/* Warning: mind the differences between RVV 1.0 and XTheadVector!
 *
 * - Different encoding of vsetvl/th.vsetvl.
 * - No vsetivli instruction.
 * - Cannot configure vta and vma vsetvl instruction, the fixed value is TAMU.
 * - No whole register move instructions.
 * - No fractional lmul.
 * - Different load/store instructions.
 * - Different name of vector indexed instructions.
 * - Destination vector register cannot overlap source vector register group for vmadc/vmsbc/widen arithmetic/narrow arithmetic.
 * - No vlm/vsm instructions.
 * - Different vnsrl/vnsra/vfncvt suffix (vv/vx/vi vs wv/wx/wi).
 * - Different size of mask mode (1.0 is vl and xtheadvector is vlen).
 * - No vrgatherei16.vv instruction.
 * - Different encoding of vmv.s.x instruction.
 *
 * We ignore all the naming differences and use the RVV 1.0 naming convention.

 */

#define VECTOR_SEW8   0b000
#define VECTOR_SEW16  0b001
#define VECTOR_SEW32  0b010
#define VECTOR_SEW64  0b011
#define VECTOR_SEWNA  0b111  // N/A
#define VECTOR_SEWANY 0b1000 // any sew would be ok, but not N/A.

#define VECTOR_LMUL1 0b000
#define VECTOR_LMUL2 0b001
#define VECTOR_LMUL4 0b010
#define VECTOR_LMUL8 0b011

#define VECTOR_MASKED   0
#define VECTOR_UNMASKED 1

#define VECTOR_NFIELD1 0b000
#define VECTOR_NFIELD2 0b001
#define VECTOR_NFIELD3 0b010
#define VECTOR_NFIELD4 0b011
#define VECTOR_NFIELD5 0b100
#define VECTOR_NFIELD6 0b101
#define VECTOR_NFIELD7 0b110
#define VECTOR_NFIELD8 0b111

//  configuration setting
//  https://github.com/riscv/riscv-v-spec/blob/master/vcfg-format.adoc
#define VSETIVLI(rd, zimm, zimm10) EMIT(I_type(0b110000000000 | (zimm10), zimm, 0b111, rd, 0b1010111)) // 11...............111.....1010111
#define VSETVLI(rd, rs1, zimm11)   EMIT(I_type(zimm11, rs1, 0b111, rd, 0b1010111))                     // 0................111.....1010111
#define VSETVL(rd, rs1, rs2)       EMIT(R_type(0b1000000, rs2, rs1, 0b111, rd, 0b1010111))             // 1000000..........111.....1010111

//  Vector Loads and Store
//  https://github.com/riscv/riscv-v-spec/blob/master/vmem-format.adoc
//
//  Vector Unit-Stride Instructions (including segment part)
//  https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#74-vector-unit-stride-instructions

#define VLM_V(vd, rs1)  EMIT(I_type(0b000000101011, rs1, 0b000, vd, 0b0000111))  // 000000101011.....000.....0000111
#define VSM_V(vs3, rs1) EMIT(I_type(0b000000101011, rs1, 0b000, vs3, 0b0100111)) // 000000101011.....000.....0100111

#define VLE8_V(vd, rs1, vm, nf)   EMIT(I_type(((nf) << 9) | (vm << 5), rs1, 0b000, vd, 0b0000111))  // ...000.00000.....000.....0000111
#define VLE16_V(vd, rs1, vm, nf)  EMIT(I_type(((nf) << 9) | (vm << 5), rs1, 0b101, vd, 0b0000111))  // ...000.00000.....101.....0000111
#define VLE32_V(vd, rs1, vm, nf)  EMIT(I_type(((nf) << 9) | (vm << 5), rs1, 0b110, vd, 0b0000111))  // ...000.00000.....110.....0000111
#define VLE64_V(vd, rs1, vm, nf)  EMIT(I_type(((nf) << 9) | (vm << 5), rs1, 0b111, vd, 0b0000111))  // ...000.00000.....111.....0000111
#define VSE8_V(vs3, rs1, vm, nf)  EMIT(I_type(((nf) << 9) | (vm << 5), rs1, 0b000, vs3, 0b0100111)) // ...000.00000.....000.....0100111
#define VSE16_V(vs3, rs1, vm, nf) EMIT(I_type(((nf) << 9) | (vm << 5), rs1, 0b101, vs3, 0b0100111)) // ...000.00000.....101.....0100111
#define VSE32_V(vs3, rs1, vm, nf) EMIT(I_type(((nf) << 9) | (vm << 5), rs1, 0b110, vs3, 0b0100111)) // ...000.00000.....110.....0100111
#define VSE64_V(vs3, rs1, vm, nf) EMIT(I_type(((nf) << 9) | (vm << 5), rs1, 0b111, vs3, 0b0100111)) // ...000.00000.....111.....0100111

#define VLE_V(vd, rs1, sew, vm, nf)  EMIT(I_type(((nf) << 9) | (vm << 5), rs1, (sew == 0b000 ? 0b000 : (0b100 | sew)), vd, 0b0000111))
#define VSE_V(vs3, rs1, sew, vm, nf) EMIT(I_type(((nf) << 9) | (vm << 5), rs1, (sew == 0b000 ? 0b000 : (0b100 | sew)), vs3, 0b0100111))

//  Vector Indexed-Unordered Instructions (including segment part)
//  https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#76-vector-indexed-instructions
//  Note: Make sure SEW in vtype is always the same as EEW, for xtheadvector compatibility!

#define VLUXEI8_V(vd, vs2, rs1, vm, nf)   EMIT(R_type(((nf) << 4) | (vm) | (cpuext.xtheadvector ? 0b0110 : 0b0010), vs2, rs1, 0b000, vd, 0b0000111))  // ...001...........000.....0000111
#define VLUXEI16_V(vd, vs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | (cpuext.xtheadvector ? 0b0110 : 0b0010), vs2, rs1, 0b101, vd, 0b0000111))  // ...001...........101.....0000111
#define VLUXEI32_V(vd, vs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | (cpuext.xtheadvector ? 0b0110 : 0b0010), vs2, rs1, 0b110, vd, 0b0000111))  // ...001...........110.....0000111
#define VLUXEI64_V(vd, vs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | (cpuext.xtheadvector ? 0b0110 : 0b0010), vs2, rs1, 0b111, vd, 0b0000111))  // ...001...........111.....0000111
#define VSUXEI8_V(vs3, vs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | (cpuext.xtheadvector ? 0b1110 : 0b0010), vs2, rs1, 0b000, vs3, 0b0100111)) // ...001...........000.....0100111
#define VSUXEI16_V(vs3, vs2, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm) | (cpuext.xtheadvector ? 0b1110 : 0b0010), vs2, rs1, 0b101, vs3, 0b0100111)) // ...001...........101.....0100111
#define VSUXEI32_V(vs3, vs2, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm) | (cpuext.xtheadvector ? 0b1110 : 0b0010), vs2, rs1, 0b110, vs3, 0b0100111)) // ...001...........110.....0100111
#define VSUXEI64_V(vs3, vs2, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm) | (cpuext.xtheadvector ? 0b1110 : 0b0010), vs2, rs1, 0b111, vs3, 0b0100111)) // ...001...........111.....0100111

//  Vector Strided Instructions (including segment part)
//  https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#75-vector-strided-instructions

#define VLSE8_V(vd, rs2, rs1, vm, nf)   EMIT(R_type(((nf) << 4) | (vm) | 0b0100, rs2, rs1, 0b000, vd, 0b0000111))  // ...010...........000.....0000111
#define VLSE16_V(vd, rs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | 0b0100, rs2, rs1, 0b101, vd, 0b0000111))  // ...010...........101.....0000111
#define VLSE32_V(vd, rs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | 0b0100, rs2, rs1, 0b110, vd, 0b0000111))  // ...010...........110.....0000111
#define VLSE64_V(vd, rs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | 0b0100, rs2, rs1, 0b111, vd, 0b0000111))  // ...010...........111.....0000111
#define VSSE8_V(vs3, rs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | 0b0100, rs2, rs1, 0b000, vs3, 0b0100111)) // ...010...........000.....0100111
#define VSSE16_V(vs3, rs2, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm) | 0b0100, rs2, rs1, 0b101, vs3, 0b0100111)) // ...010...........101.....0100111
#define VSSE32_V(vs3, rs2, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm) | 0b0100, rs2, rs1, 0b110, vs3, 0b0100111)) // ...010...........110.....0100111
#define VSSE64_V(vs3, rs2, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm) | 0b0100, rs2, rs1, 0b111, vs3, 0b0100111)) // ...010...........111.....0100111

//  Vector Indexed-Ordered Instructions (including segment part)
//  https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#76-vector-indexed-instructions

#define VLOXEI8_V(vd, vs2, rs1, vm, nf)   EMIT(R_type(((nf) << 4) | (vm) | 0b0110, vs2, rs1, 0b000, vd, 0b0000111))  // ...011...........000.....0000111
#define VLOXEI16_V(vd, vs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | 0b0110, vs2, rs1, 0b101, vd, 0b0000111))  // ...011...........101.....0000111
#define VLOXEI32_V(vd, vs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | 0b0110, vs2, rs1, 0b110, vd, 0b0000111))  // ...011...........110.....0000111
#define VLOXEI64_V(vd, vs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | 0b0110, vs2, rs1, 0b111, vd, 0b0000111))  // ...011...........111.....0000111
#define VSOXEI8_V(vs3, vs2, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm) | 0b0110, vs2, rs1, 0b000, vs3, 0b0100111)) // ...011...........000.....0100111
#define VSOXEI16_V(vs3, vs2, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm) | 0b0110, vs2, rs1, 0b101, vs3, 0b0100111)) // ...011...........101.....0100111
#define VSOXEI32_V(vs3, vs2, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm) | 0b0110, vs2, rs1, 0b110, vs3, 0b0100111)) // ...011...........110.....0100111
#define VSOXEI64_V(vs3, vs2, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm) | 0b0110, vs2, rs1, 0b111, vs3, 0b0100111)) // ...011...........111.....0100111

//  Unit-stride F31..29=0ault-Only-First Loads
//  https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#77-unit-stride-fault-only-first-loads

#define VLE8FF_V(vd, rs1, vm, nf)  EMIT(R_type(((nf) << 4) | (vm), 0b10000, rs1, 0b000, vd, 0b0000111)) // ...000.10000.....000.....0000111
#define VLE16FF_V(vd, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm), 0b10000, rs1, 0b101, vd, 0b0000111)) // ...000.10000.....101.....0000111
#define VLE32FF_V(vd, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm), 0b10000, rs1, 0b110, vd, 0b0000111)) // ...000.10000.....110.....0000111
#define VLE64FF_V(vd, rs1, vm, nf) EMIT(R_type(((nf) << 4) | (vm), 0b10000, rs1, 0b111, vd, 0b0000111)) // ...000.10000.....111.....0000111

//  Vector Load/Store Whole Registers
//  https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#79-vector-loadstore-whole-register-instructions

#define VL1RE8_V(vd, rs1)  EMIT(I_type(0b000000101000, rs1, 0b000, vd, 0b0000111))  // 000000101000.....000.....0000111
#define VL1RE16_V(vd, rs1) EMIT(I_type(0b000000101000, rs1, 0b101, vd, 0b0000111))  // 000000101000.....101.....0000111
#define VL1RE32_V(vd, rs1) EMIT(I_type(0b000000101000, rs1, 0b110, vd, 0b0000111))  // 000000101000.....110.....0000111
#define VL1RE64_V(vd, rs1) EMIT(I_type(0b000000101000, rs1, 0b111, vd, 0b0000111))  // 000000101000.....111.....0000111
#define VL2RE8_V(vd, rs1)  EMIT(I_type(0b001000101000, rs1, 0b000, vd, 0b0000111))  // 001000101000.....000.....0000111
#define VL2RE16_V(vd, rs1) EMIT(I_type(0b001000101000, rs1, 0b101, vd, 0b0000111))  // 001000101000.....101.....0000111
#define VL2RE32_V(vd, rs1) EMIT(I_type(0b001000101000, rs1, 0b110, vd, 0b0000111))  // 001000101000.....110.....0000111
#define VL2RE64_V(vd, rs1) EMIT(I_type(0b001000101000, rs1, 0b111, vd, 0b0000111))  // 001000101000.....111.....0000111
#define VL4RE8_V(vd, rs1)  EMIT(I_type(0b011000101000, rs1, 0b000, vd, 0b0000111))  // 011000101000.....000.....0000111
#define VL4RE16_V(vd, rs1) EMIT(I_type(0b011000101000, rs1, 0b101, vd, 0b0000111))  // 011000101000.....101.....0000111
#define VL4RE32_V(vd, rs1) EMIT(I_type(0b011000101000, rs1, 0b110, vd, 0b0000111))  // 011000101000.....110.....0000111
#define VL4RE64_V(vd, rs1) EMIT(I_type(0b011000101000, rs1, 0b111, vd, 0b0000111))  // 011000101000.....111.....0000111
#define VL8RE8_V(vd, rs1)  EMIT(I_type(0b111000101000, rs1, 0b000, vd, 0b0000111))  // 111000101000.....000.....0000111
#define VL8RE16_V(vd, rs1) EMIT(I_type(0b111000101000, rs1, 0b101, vd, 0b0000111))  // 111000101000.....101.....0000111
#define VL8RE32_V(vd, rs1) EMIT(I_type(0b111000101000, rs1, 0b110, vd, 0b0000111))  // 111000101000.....110.....0000111
#define VL8RE64_V(vd, rs1) EMIT(I_type(0b111000101000, rs1, 0b111, vd, 0b0000111))  // 111000101000.....111.....0000111
#define VS1R_V(vs3, rs1)   EMIT(I_type(0b000000101000, rs1, 0b000, vs3, 0b0100111)) // 000000101000.....000.....0100111
#define VS2R_V(vs3, rs1)   EMIT(I_type(0b001000101000, rs1, 0b000, vs3, 0b0100111)) // 001000101000.....000.....0100111
#define VS4R_V(vs3, rs1)   EMIT(I_type(0b011000101000, rs1, 0b000, vs3, 0b0100111)) // 011000101000.....000.....0100111
#define VS8R_V(vs3, rs1)   EMIT(I_type(0b111000101000, rs1, 0b000, vs3, 0b0100111)) // 111000101000.....000.....0100111

//  Vector Floating-Point Instructions
//  https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#14-vector-floating-point-instructions

//  OPFVF
#define VFADD_VF(vd, vs2, rs1, vm)        EMIT(R_type(0b0000000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 000000...........101.....1010111
#define VFSUB_VF(vd, vs2, rs1, vm)        EMIT(R_type(0b0000100 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 000010...........101.....1010111
#define VFMIN_VF(vd, vs2, rs1, vm)        EMIT(R_type(0b0001000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 000100...........101.....1010111
#define VFMAX_VF(vd, vs2, rs1, vm)        EMIT(R_type(0b0001100 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 000110...........101.....1010111
#define VFSGNJ_VF(vd, vs2, rs1, vm)       EMIT(R_type(0b0010000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 001000...........101.....1010111
#define VFSGNJN_VF(vd, vs2, rs1, vm)      EMIT(R_type(0b0010010 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 001001...........101.....1010111
#define VFSGNJX_VF(vd, vs2, rs1, vm)      EMIT(R_type(0b0010100 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 001010...........101.....1010111
#define VFSLIDE1UP_VF(vd, vs2, rs1, vm)   EMIT(R_type(0b0011100 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 001110...........101.....1010111
#define VFSLIDE1DOWN_VF(vd, vs2, rs1, vm) EMIT(R_type(0b0011110 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 001111...........101.....1010111

#define VFMV_S_F(vd, rs1) EMIT(I_type((cpuext.xtheadvector ? 0b001101100000 : 0b010000100000), rs1, 0b101, vd, 0b1010111)) // 010000100000.....101.....1010111
#define VFMV_V_F(vd, rs1) EMIT(I_type(0b010111100000, rs1, 0b101, vd, 0b1010111))                                        // 010111100000.....101.....1010111

#define VFMERGE_VFM(vd, vs2, rs1) EMIT(R_type(0b0101110, vs2, rs1, 0b101, vd, 0b1010111)) // 0101110..........101.....1010111

#define VMFEQ_VF(vd, vs2, rs1, vm)    EMIT(R_type(0b0110000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 011000...........101.....1010111
#define VMFLE_VF(vd, vs2, rs1, vm)    EMIT(R_type(0b0110010 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 011001...........101.....1010111
#define VMFLT_VF(vd, vs2, rs1, vm)    EMIT(R_type(0b0110110 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 011011...........101.....1010111
#define VMFNE_VF(vd, vs2, rs1, vm)    EMIT(R_type(0b0111000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 011100...........101.....1010111
#define VMFGT_VF(vd, vs2, rs1, vm)    EMIT(R_type(0b0111010 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 011101...........101.....1010111
#define VMFGE_VF(vd, vs2, rs1, vm)    EMIT(R_type(0b0111110 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 011111...........101.....1010111
#define VFDIV_VF(vd, vs2, rs1, vm)    EMIT(R_type(0b1000000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 100000...........101.....1010111
#define VFRDIV_VF(vd, vs2, rs1, vm)   EMIT(R_type(0b1000010 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 100001...........101.....1010111
#define VFMUL_VF(vd, vs2, rs1, vm)    EMIT(R_type(0b1001000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 100100...........101.....1010111
#define VFRSUB_VF(vd, vs2, rs1, vm)   EMIT(R_type(0b1001110 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 100111...........101.....1010111
#define VFMADD_VF(vd, vs2, rs1, vm)   EMIT(R_type(0b1010000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 101000...........101.....1010111
#define VFNMADD_VF(vd, vs2, rs1, vm)  EMIT(R_type(0b1010010 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 101001...........101.....1010111
#define VFMSUB_VF(vd, vs2, rs1, vm)   EMIT(R_type(0b1010100 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 101010...........101.....1010111
#define VFNMSUB_VF(vd, vs2, rs1, vm)  EMIT(R_type(0b1010110 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 101011...........101.....1010111
#define VFMACC_VF(vd, vs2, rs1, vm)   EMIT(R_type(0b1011000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 101100...........101.....1010111
#define VFNMACC_VF(vd, vs2, rs1, vm)  EMIT(R_type(0b1011010 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 101101...........101.....1010111
#define VFMSAC_VF(vd, vs2, rs1, vm)   EMIT(R_type(0b1011100 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 101110...........101.....1010111
#define VFNMSAC_VF(vd, vs2, rs1, vm)  EMIT(R_type(0b1011110 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 101111...........101.....1010111
#define VFWADD_VF(vd, vs2, rs1, vm)   EMIT(R_type(0b1100000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 110000...........101.....1010111
#define VFWSUB_VF(vd, vs2, rs1, vm)   EMIT(R_type(0b1100100 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 110010...........101.....1010111
#define VFWADD_WF(vd, vs2, rs1, vm)   EMIT(R_type(0b1101000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 110100...........101.....1010111
#define VFWSUB_WF(vd, vs2, rs1, vm)   EMIT(R_type(0b1101100 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 110110...........101.....1010111
#define VFWMUL_VF(vd, vs2, rs1, vm)   EMIT(R_type(0b1110000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 111000...........101.....1010111
#define VFWMACC_VF(vd, vs2, rs1, vm)  EMIT(R_type(0b1111000 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 111100...........101.....1010111
#define VFWNMACC_VF(vd, vs2, rs1, vm) EMIT(R_type(0b1111010 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 111101...........101.....1010111
#define VFWMSAC_VF(vd, vs2, rs1, vm)  EMIT(R_type(0b1111100 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 111110...........101.....1010111
#define VFWNMSAC_VF(vd, vs2, rs1, vm) EMIT(R_type(0b1111110 | (vm), vs2, rs1, 0b101, vd, 0b1010111)) // 111111...........101.....1010111

//  OPFVV
#define VFADD_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b0000000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 000000...........001.....1010111
#define VFREDUSUM_VS(vd, vs2, vs1, vm) EMIT(R_type(0b0000010 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 000001...........001.....1010111
#define VFSUB_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b0000100 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 000010...........001.....1010111
#define VFREDOSUM_VS(vd, vs2, vs1, vm) EMIT(R_type(0b0000110 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 000011...........001.....1010111
#define VFMIN_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b0001000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 000100...........001.....1010111
#define VFREDMIN_VS(vd, vs2, vs1, vm)  EMIT(R_type(0b0001010 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 000101...........001.....1010111
#define VFMAX_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b0001100 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 000110...........001.....1010111
#define VFREDMAX_VS(vd, vs2, vs1, vm)  EMIT(R_type(0b0001110 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 000111...........001.....1010111
#define VFSGNJ_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b0010000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 001000...........001.....1010111
#define VFSGNJN_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b0010010 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 001001...........001.....1010111
#define VFSGNJX_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b0010100 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 001010...........001.....1010111

#define VFMV_F_S(rd, vs2) EMIT(R_type((cpuext.xtheadvector ? 0b0011001 : 0b0100001), vs2, 0b00000, 0b001, rd, 0b1010111)) // 0100001.....00000001.....1010111

#define VMFEQ_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b0110000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 011000...........001.....1010111
#define VMFLE_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b0110010 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 011001...........001.....1010111
#define VMFLT_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b0110110 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 011011...........001.....1010111
#define VMFNE_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b0111000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 011100...........001.....1010111
#define VFDIV_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1000000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 100000...........001.....1010111
#define VFMUL_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1001000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 100100...........001.....1010111
#define VFMADD_VV(vd, vs2, vs1, vm)  EMIT(R_type(0b1010000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 101000...........001.....1010111
#define VFNMADD_VV(vd, vs2, vs1, vm) EMIT(R_type(0b1010010 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 101001...........001.....1010111
#define VFMSUB_VV(vd, vs2, vs1, vm)  EMIT(R_type(0b1010100 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 101010...........001.....1010111
#define VFNMSUB_VV(vd, vs2, vs1, vm) EMIT(R_type(0b1010110 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 101011...........001.....1010111
#define VFMACC_VV(vd, vs2, vs1, vm)  EMIT(R_type(0b1011000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 101100...........001.....1010111
#define VFNMACC_VV(vd, vs2, vs1, vm) EMIT(R_type(0b1011010 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 101101...........001.....1010111
#define VFMSAC_VV(vd, vs2, vs1, vm)  EMIT(R_type(0b1011100 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 101110...........001.....1010111
#define VFNMSAC_VV(vd, vs2, vs1, vm) EMIT(R_type(0b1011110 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 101111...........001.....1010111

#define VFCVT_XU_F_V(vd, vs2, vm)      EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b00000, 0b001, vd, 0b1010111)) // 010010......00000001.....1010111
#define VFCVT_X_F_V(vd, vs2, vm)       EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b00001, 0b001, vd, 0b1010111)) // 010010......00001001.....1010111
#define VFCVT_F_XU_V(vd, vs2, vm)      EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b00010, 0b001, vd, 0b1010111)) // 010010......00010001.....1010111
#define VFCVT_F_X_V(vd, vs2, vm)       EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b00011, 0b001, vd, 0b1010111)) // 010010......00011001.....1010111
#define VFCVT_RTZ_XU_F_V(vd, vs2, vm)  EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b00110, 0b001, vd, 0b1010111)) // 010010......00110001.....1010111
#define VFCVT_RTZ_X_F_V(vd, vs2, vm)   EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b00111, 0b001, vd, 0b1010111)) // 010010......00111001.....1010111
#define VFWCVT_XU_F_V(vd, vs2, vm)     EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b01000, 0b001, vd, 0b1010111)) // 010010......01000001.....1010111
#define VFWCVT_X_F_V(vd, vs2, vm)      EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b01001, 0b001, vd, 0b1010111)) // 010010......01001001.....1010111
#define VFWCVT_F_XU_V(vd, vs2, vm)     EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b01010, 0b001, vd, 0b1010111)) // 010010......01010001.....1010111
#define VFWCVT_F_X_V(vd, vs2, vm)      EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b01011, 0b001, vd, 0b1010111)) // 010010......01011001.....1010111
#define VFWCVT_F_F_V(vd, vs2, vm)      EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b01100, 0b001, vd, 0b1010111)) // 010010......01100001.....1010111
#define VFWCVT_RTZ_XU_F_V(vd, vs2, vm) EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b01110, 0b001, vd, 0b1010111)) // 010010......01110001.....1010111
#define VFWCVT_RTZ_X_F_V(vd, vs2, vm)  EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b01111, 0b001, vd, 0b1010111)) // 010010......01111001.....1010111
#define VFNCVT_XU_F_W(vd, vs2, vm)     EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b10000, 0b001, vd, 0b1010111)) // 010010......10000001.....1010111
#define VFNCVT_X_F_W(vd, vs2, vm)      EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b10001, 0b001, vd, 0b1010111)) // 010010......10001001.....1010111
#define VFNCVT_F_XU_W(vd, vs2, vm)     EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b10010, 0b001, vd, 0b1010111)) // 010010......10010001.....1010111
#define VFNCVT_F_X_W(vd, vs2, vm)      EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b10011, 0b001, vd, 0b1010111)) // 010010......10011001.....1010111
#define VFNCVT_F_F_W(vd, vs2, vm)      EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b10100, 0b001, vd, 0b1010111)) // 010010......10100001.....1010111
#define VFNCVT_ROD_F_F_W(vd, vs2, vm)  EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b10101, 0b001, vd, 0b1010111)) // 010010......10101001.....1010111
#define VFNCVT_RTZ_XU_F_W(vd, vs2, vm) EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b10110, 0b001, vd, 0b1010111)) // 010010......10110001.....1010111
#define VFNCVT_RTZ_X_F_W(vd, vs2, vm)  EMIT(R_type((cpuext.xtheadvector ? 0b1000100 : 0b0100100) | (vm), vs2, 0b10111, 0b001, vd, 0b1010111)) // 010010......10111001.....1010111
#define VFSQRT_V(vd, vs2, vm)          EMIT(R_type((cpuext.xtheadvector ? 0b1000110 : 0b0100110) | (vm), vs2, 0b00000, 0b001, vd, 0b1010111)) // 010011......00000001.....1010111
#define VFCLASS_V(vd, vs2, vm)         EMIT(R_type((cpuext.xtheadvector ? 0b1000110 : 0b0100110) | (vm), vs2, 0b10000, 0b001, vd, 0b1010111)) // 010011......10000001.....1010111

#define VFRSQRT7_V(vd, vs2, vm) EMIT(R_type(0b0100110 | (vm), vs2, 0b00100, 0b001, vd, 0b1010111)) // 010011......00100001.....1010111
#define VFREC7_V(vd, vs2, vm)   EMIT(R_type(0b0100110 | (vm), vs2, 0b00101, 0b001, vd, 0b1010111)) // 010011......00101001.....1010111

#define VFWADD_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1100000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 110000...........001.....1010111
#define VFWREDUSUM_VS(vd, vs2, vs1, vm) EMIT(R_type(0b1100010 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 110001...........001.....1010111
#define VFWSUB_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1100100 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 110010...........001.....1010111
#define VFWREDOSUM_VS(vd, vs2, vs1, vm) EMIT(R_type(0b1100110 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 110011...........001.....1010111
#define VFWADD_WV(vd, vs2, vs1, vm)     EMIT(R_type(0b1101000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 110100...........001.....1010111
#define VFWSUB_WV(vd, vs2, vs1, vm)     EMIT(R_type(0b1101100 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 110110...........001.....1010111
#define VFWMUL_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1110000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 111000...........001.....1010111
#define VFWMACC_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1111000 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 111100...........001.....1010111
#define VFWNMACC_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1111010 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 111101...........001.....1010111
#define VFWMSAC_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1111100 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 111110...........001.....1010111
#define VFWNMSAC_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1111110 | (vm), vs2, vs1, 0b001, vd, 0b1010111)) // 111111...........001.....1010111

//  OPIVX
#define VADD_VX(vd, vs2, rs1, vm)       EMIT(R_type(0b0000000 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 000000...........100.....1010111
#define VSUB_VX(vd, vs2, rs1, vm)       EMIT(R_type(0b0000100 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 000010...........100.....1010111
#define VRSUB_VX(vd, vs2, rs1, vm)      EMIT(R_type(0b0000110 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 000011...........100.....1010111
#define VMINU_VX(vd, vs2, rs1, vm)      EMIT(R_type(0b0001000 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 000100...........100.....1010111
#define VMIN_VX(vd, vs2, rs1, vm)       EMIT(R_type(0b0001010 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 000101...........100.....1010111
#define VMAXU_VX(vd, vs2, rs1, vm)      EMIT(R_type(0b0001100 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 000110...........100.....1010111
#define VMAX_VX(vd, vs2, rs1, vm)       EMIT(R_type(0b0001110 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 000111...........100.....1010111
#define VAND_VX(vd, vs2, rs1, vm)       EMIT(R_type(0b0010010 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 001001...........100.....1010111
#define VOR_VX(vd, vs2, rs1, vm)        EMIT(R_type(0b0010100 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 001010...........100.....1010111
#define VXOR_VX(vd, vs2, rs1, vm)       EMIT(R_type(0b0010110 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 001011...........100.....1010111
#define VRGATHER_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b0011000 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 001100...........100.....1010111
#define VSLIDEUP_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b0011100 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 001110...........100.....1010111
#define VSLIDEDOWN_VX(vd, vs2, rs1, vm) EMIT(R_type(0b0011110 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 001111...........100.....1010111

#define VADC_VXM(vd, vs2, rs1)   EMIT(R_type((0b0100000 | cpuext.xtheadvector), vs2, rs1, 0b100, vd, 0b1010111)) // 0100000..........100.....1010111
#define VMADC_VXM(vd, vs2, rs1)  EMIT(R_type(0b0100010, vs2, rs1, 0b100, vd, 0b1010111))                         // 0100010..........100.....1010111
#define VMADC_VX(vd, vs2, rs1)   EMIT(R_type(0b0100011, vs2, rs1, 0b100, vd, 0b1010111))                         // 0100011..........100.....1010111
#define VSBC_VXM(vd, vs2, rs1)   EMIT(R_type((0b0100100 | cpuext.xtheadvector), vs2, rs1, 0b100, vd, 0b1010111)) // 0100100..........100.....1010111
#define VMSBC_VXM(vd, vs2, rs1)  EMIT(R_type(0b0100110, vs2, rs1, 0b100, vd, 0b1010111))                         // 0100110..........100.....1010111
#define VMSBC_VX(vd, vs2, rs1)   EMIT(R_type(0b0100111, vs2, rs1, 0b100, vd, 0b1010111))                         // 0100111..........100.....1010111
#define VMERGE_VXM(vd, vs2, rs1) EMIT(R_type(0b0101110, vs2, rs1, 0b100, vd, 0b1010111))                         // 0101110..........100.....1010111

#define VMV_V_X(vd, rs1) EMIT(I_type(0b010111100000, rs1, 0b100, vd, 0b1010111)) // 010111100000.....100.....1010111

#define VMSEQ_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b0110000 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 011000...........100.....1010111
#define VMSNE_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b0110010 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 011001...........100.....1010111
#define VMSLTU_VX(vd, vs2, rs1, vm)  EMIT(R_type(0b0110100 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 011010...........100.....1010111
#define VMSLT_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b0110110 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 011011...........100.....1010111
#define VMSLEU_VX(vd, vs2, rs1, vm)  EMIT(R_type(0b0111000 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 011100...........100.....1010111
#define VMSLE_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b0111010 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 011101...........100.....1010111
#define VMSGTU_VX(vd, vs2, rs1, vm)  EMIT(R_type(0b0111100 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 011110...........100.....1010111
#define VMSGT_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b0111110 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 011111...........100.....1010111
#define VSADDU_VX(vd, vs2, rs1, vm)  EMIT(R_type(0b1000000 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 100000...........100.....1010111
#define VSADD_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1000010 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 100001...........100.....1010111
#define VSSUBU_VX(vd, vs2, rs1, vm)  EMIT(R_type(0b1000100 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 100010...........100.....1010111
#define VSSUB_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1000110 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 100011...........100.....1010111
#define VSLL_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1001010 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 100101...........100.....1010111
#define VSMUL_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1001110 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 100111...........100.....1010111
#define VSRL_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1010000 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 101000...........100.....1010111
#define VSRA_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1010010 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 101001...........100.....1010111
#define VSSRL_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1010100 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 101010...........100.....1010111
#define VSSRA_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1010110 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 101011...........100.....1010111
#define VNSRL_WX(vd, vs2, rs1, vm)   EMIT(R_type(0b1011000 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 101100...........100.....1010111
#define VNSRA_WX(vd, vs2, rs1, vm)   EMIT(R_type(0b1011010 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 101101...........100.....1010111
#define VNCLIPU_WX(vd, vs2, rs1, vm) EMIT(R_type(0b1011100 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 101110...........100.....1010111
#define VNCLIP_WX(vd, vs2, rs1, vm)  EMIT(R_type(0b1011110 | (vm), vs2, rs1, 0b100, vd, 0b1010111)) // 101111...........100.....1010111

//  OPIVV
#define VADD_VV(vd, vs2, vs1, vm)         EMIT(R_type(0b0000000 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 000000...........000.....1010111
#define VSUB_VV(vd, vs2, vs1, vm)         EMIT(R_type(0b0000100 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 000010...........000.....1010111
#define VMINU_VV(vd, vs2, vs1, vm)        EMIT(R_type(0b0001000 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 000100...........000.....1010111
#define VMIN_VV(vd, vs2, vs1, vm)         EMIT(R_type(0b0001010 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 000101...........000.....1010111
#define VMAXU_VV(vd, vs2, vs1, vm)        EMIT(R_type(0b0001100 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 000110...........000.....1010111
#define VMAX_VV(vd, vs2, vs1, vm)         EMIT(R_type(0b0001110 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 000111...........000.....1010111
#define VAND_VV(vd, vs2, vs1, vm)         EMIT(R_type(0b0010010 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 001001...........000.....1010111
#define VOR_VV(vd, vs2, vs1, vm)          EMIT(R_type(0b0010100 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 001010...........000.....1010111
#define VXOR_VV(vd, vs2, vs1, vm)         EMIT(R_type(0b0010110 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 001011...........000.....1010111
#define VRGATHER_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b0011000 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 001100...........000.....1010111
#define VRGATHEREI16_VV(vd, vs2, vs1, vm) EMIT(R_type(0b0011100 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 001110...........000.....1010111

#define VADC_VVM(vd, vs2, vs1)   EMIT(R_type((0b0100000 | cpuext.xtheadvector), vs2, vs1, 0b000, vd, 0b1010111)) // 0100000..........000.....1010111
#define VMADC_VVM(vd, vs2, vs1)  EMIT(R_type(0b0100010, vs2, vs1, 0b000, vd, 0b1010111))                         // 0100010..........000.....1010111
#define VMADC_VV(vd, vs2, vs1)   EMIT(R_type(0b0100011, vs2, vs1, 0b000, vd, 0b1010111))                         // 0100011..........000.....1010111
#define VSBC_VVM(vd, vs2, vs1)   EMIT(R_type((0b0100100 | cpuext.xtheadvector), vs2, vs1, 0b000, vd, 0b1010111)) // 0100100..........000.....1010111
#define VMSBC_VVM(vd, vs2, vs1)  EMIT(R_type(0b0100110, vs2, vs1, 0b000, vd, 0b1010111))                         // 0100110..........000.....1010111
#define VMSBC_VV(vd, vs2, vs1)   EMIT(R_type(0b0100111, vs2, vs1, 0b000, vd, 0b1010111))                         // 0100111..........000.....1010111
#define VMERGE_VVM(vd, vs2, vs1) EMIT(R_type(0b0101110, vs2, vs1, 0b000, vd, 0b1010111))                         // 0101110..........000.....1010111

#define VMV_V_V(vd, vs1) EMIT(I_type(0b010111100000, vs1, 0b000, vd, 0b1010111)) // 010111100000.....000.....1010111

#define VMSEQ_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b0110000 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 011000...........000.....1010111
#define VMSNE_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b0110010 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 011001...........000.....1010111
#define VMSLTU_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b0110100 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 011010...........000.....1010111
#define VMSLT_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b0110110 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 011011...........000.....1010111
#define VMSLEU_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b0111000 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 011100...........000.....1010111
#define VMSLE_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b0111010 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 011101...........000.....1010111
#define VSADDU_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1000000 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 100000...........000.....1010111
#define VSADD_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1000010 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 100001...........000.....1010111
#define VSSUBU_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1000100 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 100010...........000.....1010111
#define VSSUB_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1000110 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 100011...........000.....1010111
#define VSLL_VV(vd, vs2, vs1, vm)      EMIT(R_type(0b1001010 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 100101...........000.....1010111
#define VSMUL_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1001110 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 100111...........000.....1010111
#define VSRL_VV(vd, vs2, vs1, vm)      EMIT(R_type(0b1010000 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 101000...........000.....1010111
#define VSRA_VV(vd, vs2, vs1, vm)      EMIT(R_type(0b1010010 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 101001...........000.....1010111
#define VSSRL_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1010100 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 101010...........000.....1010111
#define VSSRA_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1010110 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 101011...........000.....1010111
#define VNSRL_WV(vd, vs2, vs1, vm)     EMIT(R_type(0b1011000 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 101100...........000.....1010111
#define VNSRA_WV(vd, vs2, vs1, vm)     EMIT(R_type(0b1011010 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 101101...........000.....1010111
#define VNCLIPU_WV(vd, vs2, vs1, vm)   EMIT(R_type(0b1011100 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 101110...........000.....1010111
#define VNCLIP_WV(vd, vs2, vs1, vm)    EMIT(R_type(0b1011110 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 101111...........000.....1010111
#define VWREDSUMU_VS(vd, vs2, vs1, vm) EMIT(R_type(0b1100000 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 110000...........000.....1010111
#define VWREDSUM_VS(vd, vs2, vs1, vm)  EMIT(R_type(0b1100010 | (vm), vs2, vs1, 0b000, vd, 0b1010111)) // 110001...........000.....1010111

//  OPIVI
#define VADD_VI(vd, vs2, simm5, vm)       EMIT(R_type(0b0000000 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 000000...........011.....1010111
#define VRSUB_VI(vd, vs2, simm5, vm)      EMIT(R_type(0b0000110 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 000011...........011.....1010111
#define VAND_VI(vd, vs2, simm5, vm)       EMIT(R_type(0b0010010 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 001001...........011.....1010111
#define VOR_VI(vd, vs2, simm5, vm)        EMIT(R_type(0b0010100 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 001010...........011.....1010111
#define VXOR_VI(vd, vs2, simm5, vm)       EMIT(R_type(0b0010110 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 001011...........011.....1010111
#define VRGATHER_VI(vd, vs2, simm5, vm)   EMIT(R_type(0b0011000 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 001100...........011.....1010111
#define VSLIDEUP_VI(vd, vs2, simm5, vm)   EMIT(R_type(0b0011100 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 001110...........011.....1010111
#define VSLIDEDOWN_VI(vd, vs2, simm5, vm) EMIT(R_type(0b0011110 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 001111...........011.....1010111

#define VADC_VIM(vd, vs2, simm5)   EMIT(R_type((0b0100000 | cpuext.xtheadvector), vs2, simm5, 0b011, vd, 0b1010111)) // 0100000..........011.....1010111
#define VMADC_VIM(vd, vs2, simm5)  EMIT(R_type(0b0100010, vs2, simm5, 0b011, vd, 0b1010111))                         // 0100010..........011.....1010111
#define VMADC_VI(vd, vs2, simm5)   EMIT(R_type(0b0100011, vs2, simm5, 0b011, vd, 0b1010111))                         // 0100011..........011.....1010111
#define VMERGE_VIM(vd, vs2, simm5) EMIT(R_type(0b0101110, vs2, simm5, 0b011, vd, 0b1010111))                         // 0101110..........011.....1010111

#define VMV_V_I(vd, simm5) EMIT(I_type(0b010111100000, simm5, 0b011, vd, 0b1010111)) // 010111100000.....011.....1010111

#define VMSEQ_VI(vd, vs2, simm5, vm)  EMIT(R_type(0b0110000 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 011000...........011.....1010111
#define VMSNE_VI(vd, vs2, simm5, vm)  EMIT(R_type(0b0110010 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 011001...........011.....1010111
#define VMSLEU_VI(vd, vs2, simm5, vm) EMIT(R_type(0b0111000 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 011100...........011.....1010111
#define VMSLE_VI(vd, vs2, simm5, vm)  EMIT(R_type(0b0111010 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 011101...........011.....1010111
#define VMSGTU_VI(vd, vs2, simm5, vm) EMIT(R_type(0b0111100 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 011110...........011.....1010111
#define VMSGT_VI(vd, vs2, simm5, vm)  EMIT(R_type(0b0111110 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 011111...........011.....1010111

#define VSADDU_VI(vd, vs2, simm5, vm)  EMIT(R_type(0b1000000 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 100000...........011.....1010111
#define VSADD_VI(vd, vs2, simm5, vm)   EMIT(R_type(0b1000010 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 100001...........011.....1010111
#define VSLL_VI(vd, vs2, simm5, vm)    EMIT(R_type(0b1001010 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 100101...........011.....1010111
#define VSRL_VI(vd, vs2, simm5, vm)    EMIT(R_type(0b1010000 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 101000...........011.....1010111
#define VSRA_VI(vd, vs2, simm5, vm)    EMIT(R_type(0b1010010 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 101001...........011.....1010111
#define VSSRL_VI(vd, vs2, simm5, vm)   EMIT(R_type(0b1010100 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 101010...........011.....1010111
#define VSSRA_VI(vd, vs2, simm5, vm)   EMIT(R_type(0b1010110 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 101011...........011.....1010111
#define VNSRL_WI(vd, vs2, simm5, vm)   EMIT(R_type(0b1011000 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 101100...........011.....1010111
#define VNSRA_WI(vd, vs2, simm5, vm)   EMIT(R_type(0b1011010 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 101101...........011.....1010111
#define VNCLIPU_WI(vd, vs2, simm5, vm) EMIT(R_type(0b1011100 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 101110...........011.....1010111
#define VNCLIP_WI(vd, vs2, simm5, vm)  EMIT(R_type(0b1011110 | (vm), vs2, simm5, 0b011, vd, 0b1010111)) // 101111...........011.....1010111

#define VMV1R_V(vd, vs2) EMIT(R_type(0b1001111, vs2, 0b00000, 0b011, vd, 0b1010111)) // 1001111.....00000011.....1010111
#define VMV2R_V(vd, vs2) EMIT(R_type(0b1001111, vs2, 0b00001, 0b011, vd, 0b1010111)) // 1001111.....00001011.....1010111
#define VMV4R_V(vd, vs2) EMIT(R_type(0b1001111, vs2, 0b00011, 0b011, vd, 0b1010111)) // 1001111.....00011011.....1010111
#define VMV8R_V(vd, vs2) EMIT(R_type(0b1001111, vs2, 0b00111, 0b011, vd, 0b1010111)) // 1001111.....00111011.....1010111

//  OPMVV
#define VREDSUM_VS(vd, vs2, vs1, vm)  EMIT(R_type(0b0000000 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 000000...........010.....1010111
#define VREDAND_VS(vd, vs2, vs1, vm)  EMIT(R_type(0b0000010 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 000001...........010.....1010111
#define VREDOR_VS(vd, vs2, vs1, vm)   EMIT(R_type(0b0000100 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 000010...........010.....1010111
#define VREDXOR_VS(vd, vs2, vs1, vm)  EMIT(R_type(0b0000110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 000011...........010.....1010111
#define VREDMINU_VS(vd, vs2, vs1, vm) EMIT(R_type(0b0001000 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 000100...........010.....1010111
#define VREDMIN_VS(vd, vs2, vs1, vm)  EMIT(R_type(0b0001010 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 000101...........010.....1010111
#define VREDMAXU_VS(vd, vs2, vs1, vm) EMIT(R_type(0b0001100 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 000110...........010.....1010111
#define VREDMAX_VS(vd, vs2, vs1, vm)  EMIT(R_type(0b0001110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 000111...........010.....1010111
#define VAADD_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b0010010 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 001001...........010.....1010111
#define VASUB_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b0010110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 001011...........010.....1010111
// Warning, no unsigned edition in Xtheadvector
#define VAADDU_VV(vd, vs2, vs1, vm) EMIT(R_type(0b0010000 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 001000...........010.....1010111
#define VASUBU_VV(vd, vs2, vs1, vm) EMIT(R_type(0b0010100 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 001010...........010.....1010111

// Warning: zero-extended on xtheadvector!
#define VMV_X_S(rd, vs2) EMIT(R_type((cpuext.xtheadvector ? 0b0011001 : 0b0100001), vs2, 0b00000, 0b010, rd, 0b1010111)) // 0100001.....00000010.....1010111

// Warning: xtheadvector only
#define VEXT_X_V(rd, vs2, rs1) EMIT(R_type((cpuext.xtheadvector ? 0b0011001 : 0b0100001), vs2, rs1, 0b010, rd, 0b1010111))

//  Vector Integer Extension Instructions
//  https://github.com/riscv/riscv-v-spec/blob/e49574c92b072fd4d71e6cb20f7e8154de5b83fe/v-spec.adoc#123-vector-integer-extension

#define VZEXT_VF8(vd, vs2, vm) EMIT(R_type(0b0100100 | (vm), vs2, 0b00010, 0b010, vd, 0b1010111)) // 010010......00010010.....1010111
#define VSEXT_VF8(vd, vs2, vm) EMIT(R_type(0b0100100 | (vm), vs2, 0b00011, 0b010, vd, 0b1010111)) // 010010......00011010.....1010111
#define VZEXT_VF4(vd, vs2, vm) EMIT(R_type(0b0100100 | (vm), vs2, 0b00100, 0b010, vd, 0b1010111)) // 010010......00100010.....1010111
#define VSEXT_VF4(vd, vs2, vm) EMIT(R_type(0b0100100 | (vm), vs2, 0b00101, 0b010, vd, 0b1010111)) // 010010......00101010.....1010111
#define VZEXT_VF2(vd, vs2, vm) EMIT(R_type(0b0100100 | (vm), vs2, 0b00110, 0b010, vd, 0b1010111)) // 010010......00110010.....1010111
#define VSEXT_VF2(vd, vs2, vm) EMIT(R_type(0b0100100 | (vm), vs2, 0b00111, 0b010, vd, 0b1010111)) // 010010......00111010.....1010111

#define VCOMPRESS_VM(vd, vs2, vs1) EMIT(R_type(0b0101111, vs2, vs1, 0b010, vd, 0b1010111)) // 0101111..........010.....1010111
#define VMANDN_MM(vd, vs2, vs1)    EMIT(R_type(0b0110001, vs2, vs1, 0b010, vd, 0b1010111)) // 0110001..........010.....1010111
#define VMAND_MM(vd, vs2, vs1)     EMIT(R_type(0b0110011, vs2, vs1, 0b010, vd, 0b1010111)) // 0110011..........010.....1010111
#define VMOR_MM(vd, vs2, vs1)      EMIT(R_type(0b0110101, vs2, vs1, 0b010, vd, 0b1010111)) // 0110101..........010.....1010111
#define VMXOR_MM(vd, vs2, vs1)     EMIT(R_type(0b0110111, vs2, vs1, 0b010, vd, 0b1010111)) // 0110111..........010.....1010111
#define VMORN_MM(vd, vs2, vs1)     EMIT(R_type(0b0111001, vs2, vs1, 0b010, vd, 0b1010111)) // 0111001..........010.....1010111
#define VMNAND_MM(vd, vs2, vs1)    EMIT(R_type(0b0111011, vs2, vs1, 0b010, vd, 0b1010111)) // 0111011..........010.....1010111
#define VMNOR_MM(vd, vs2, vs1)     EMIT(R_type(0b0111101, vs2, vs1, 0b010, vd, 0b1010111)) // 0111101..........010.....1010111
#define VMXNOR_MM(vd, vs2, vs1)    EMIT(R_type(0b0111111, vs2, vs1, 0b010, vd, 0b1010111)) // 0111111..........010.....1010111

#define VMSBF_M(vd, vs2, vm)  EMIT(R_type((cpuext.xtheadvector ? 0b0101100 : 0b0101000) | (vm), vs2, 0b00001, 0b010, vd, 0b1010111)) // 010100......00001010.....1010111
#define VMSOF_M(vd, vs2, vm)  EMIT(R_type((cpuext.xtheadvector ? 0b0101100 : 0b0101000) | (vm), vs2, 0b00010, 0b010, vd, 0b1010111)) // 010100......00010010.....1010111
#define VMSIF_M(vd, vs2, vm)  EMIT(R_type((cpuext.xtheadvector ? 0b0101100 : 0b0101000) | (vm), vs2, 0b00011, 0b010, vd, 0b1010111)) // 010100......00011010.....1010111
#define VIOTA_M(vd, vs2, vm)  EMIT(R_type((cpuext.xtheadvector ? 0b0101100 : 0b0101000) | (vm), vs2, 0b10000, 0b010, vd, 0b1010111)) // 010100......10000010.....1010111
#define VCPOP_M(rd, vs2, vm)  EMIT(R_type((cpuext.xtheadvector ? 0b0101100 : 0b0100000) | (vm), vs2, 0b10000, 0b010, rd, 0b1010111)) // 010000......10000010.....1010111
#define VFIRST_M(rd, vs2, vm) EMIT(R_type((cpuext.xtheadvector ? 0b0101100 : 0b0100000) | (vm), vs2, 0b10001, 0b010, rd, 0b1010111)) // 010000......10001010.....1010111

#define VID_V(vd, vm) EMIT(R_type((cpuext.xtheadvector ? 0b0101100 : 0b0101000) | (vm), 0b00000, 0b10001, 0b010, vd, 0b1010111)) // 010100.0000010001010.....1010111

#define VDIVU_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1000000 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 100000...........010.....1010111
#define VDIV_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1000010 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 100001...........010.....1010111
#define VREMU_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1000100 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 100010...........010.....1010111
#define VREM_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1000110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 100011...........010.....1010111
#define VMULHU_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1001000 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 100100...........010.....1010111
#define VMUL_VV(vd, vs2, vs1, vm)     EMIT(R_type(0b1001010 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 100101...........010.....1010111
#define VMULHSU_VV(vd, vs2, vs1, vm)  EMIT(R_type(0b1001100 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 100110...........010.....1010111
#define VMULH_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1001110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 100111...........010.....1010111
#define VMADD_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1010010 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 101001...........010.....1010111
#define VNMSUB_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1010110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 101011...........010.....1010111
#define VMACC_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1011010 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 101101...........010.....1010111
#define VNMSAC_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1011110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 101111...........010.....1010111
#define VWADDU_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1100000 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 110000...........010.....1010111
#define VWADD_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1100010 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 110001...........010.....1010111
#define VWSUBU_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1100100 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 110010...........010.....1010111
#define VWSUB_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1100110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 110011...........010.....1010111
#define VWADDU_WV(vd, vs2, vs1, vm)   EMIT(R_type(0b1101000 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 110100...........010.....1010111
#define VWADD_WV(vd, vs2, vs1, vm)    EMIT(R_type(0b1101010 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 110101...........010.....1010111
#define VWSUBU_WV(vd, vs2, vs1, vm)   EMIT(R_type(0b1101100 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 110110...........010.....1010111
#define VWSUB_WV(vd, vs2, vs1, vm)    EMIT(R_type(0b1101110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 110111...........010.....1010111
#define VWMULU_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1110000 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 111000...........010.....1010111
#define VWMULSU_VV(vd, vs2, vs1, vm)  EMIT(R_type(0b1110100 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 111010...........010.....1010111
#define VWMUL_VV(vd, vs2, vs1, vm)    EMIT(R_type(0b1110110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 111011...........010.....1010111
#define VWMACCU_VV(vd, vs2, vs1, vm)  EMIT(R_type(0b1111000 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 111100...........010.....1010111
#define VWMACC_VV(vd, vs2, vs1, vm)   EMIT(R_type(0b1111010 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 111101...........010.....1010111
#define VWMACCSU_VV(vd, vs2, vs1, vm) EMIT(R_type(0b1111110 | (vm), vs2, vs1, 0b010, vd, 0b1010111)) // 111111...........010.....1010111

//  OPMVX
#define VAADDU_VX(vd, vs2, rs1, vm)      EMIT(R_type(0b0010000 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 001000...........110.....1010111
#define VAADD_VX(vd, vs2, rs1, vm)       EMIT(R_type(0b0010010 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 001001...........110.....1010111
#define VASUBU_VX(vd, vs2, rs1, vm)      EMIT(R_type(0b0010100 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 001010...........110.....1010111
#define VASUB_VX(vd, vs2, rs1, vm)       EMIT(R_type(0b0010110 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 001011...........110.....1010111
#define VSLIDE1UP_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b0011100 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 001110...........110.....1010111
#define VSLIDE1DOWN_VX(vd, vs2, rs1, vm) EMIT(R_type(0b0011110 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 001111...........110.....1010111

// Warning, upper elements will be cleared in xtheadvector!
#define VMV_S_X(vd, rs1) EMIT(I_type((cpuext.xtheadvector ? 0b001101100000 : 0b010000100000), rs1, 0b110, vd, 0b1010111))

#define VDIVU_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1000000 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 100000...........110.....1010111
#define VDIV_VX(vd, vs2, rs1, vm)     EMIT(R_type(0b1000010 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 100001...........110.....1010111
#define VREMU_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1000100 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 100010...........110.....1010111
#define VREM_VX(vd, vs2, rs1, vm)     EMIT(R_type(0b1000110 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 100011...........110.....1010111
#define VMULHU_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1001000 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 100100...........110.....1010111
#define VMUL_VX(vd, vs2, rs1, vm)     EMIT(R_type(0b1001010 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 100101...........110.....1010111
#define VMULHSU_VX(vd, vs2, rs1, vm)  EMIT(R_type(0b1001100 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 100110...........110.....1010111
#define VMULH_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1001110 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 100111...........110.....1010111
#define VMADD_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1010010 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 101001...........110.....1010111
#define VNMSUB_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1010110 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 101011...........110.....1010111
#define VMACC_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1011010 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 101101...........110.....1010111
#define VNMSAC_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1011110 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 101111...........110.....1010111
#define VWADDU_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1100000 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 110000...........110.....1010111
#define VWADD_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1100010 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 110001...........110.....1010111
#define VWSUBU_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1100100 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 110010...........110.....1010111
#define VWSUB_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1100110 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 110011...........110.....1010111
#define VWADDU_WX(vd, vs2, rs1, vm)   EMIT(R_type(0b1101000 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 110100...........110.....1010111
#define VWADD_WX(vd, vs2, rs1, vm)    EMIT(R_type(0b1101010 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 110101...........110.....1010111
#define VWSUBU_WX(vd, vs2, rs1, vm)   EMIT(R_type(0b1101100 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 110110...........110.....1010111
#define VWSUB_WX(vd, vs2, rs1, vm)    EMIT(R_type(0b1101110 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 110111...........110.....1010111
#define VWMULU_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1110000 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 111000...........110.....1010111
#define VWMULSU_VX(vd, vs2, rs1, vm)  EMIT(R_type(0b1110100 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 111010...........110.....1010111
#define VWMUL_VX(vd, vs2, rs1, vm)    EMIT(R_type(0b1110110 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 111011...........110.....1010111
#define VWMACCU_VX(vd, vs2, rs1, vm)  EMIT(R_type(0b1111000 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 111100...........110.....1010111
#define VWMACC_VX(vd, vs2, rs1, vm)   EMIT(R_type(0b1111010 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 111101...........110.....1010111
#define VWMACCUS_VX(vd, vs2, rs1, vm) EMIT(R_type(0b1111100 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 111110...........110.....1010111
#define VWMACCSU_VX(vd, vs2, rs1, vm) EMIT(R_type(0b1111110 | (vm), vs2, rs1, 0b110, vd, 0b1010111)) // 111111...........110.....1010111

#endif //__RV64_EMITTER_H__