diff options
| author | Peter Maydell <peter.maydell@linaro.org> | 2024-04-19 14:36:00 +0100 |
|---|---|---|
| committer | Peter Maydell <peter.maydell@linaro.org> | 2024-04-25 10:21:05 +0100 |
| commit | 28cca59c469b16f1352e784b566fd36ace2be4b4 (patch) | |
| tree | 981d70617b07e41128872ef2f5db5ac084b319b5 /hw/intc/arm_gicv3_cpuif.c | |
| parent | 44ed1e4b9a4df256bb56487ae5150b6807536703 (diff) | |
| download | focaccia-qemu-28cca59c469b16f1352e784b566fd36ace2be4b4.tar.gz focaccia-qemu-28cca59c469b16f1352e784b566fd36ace2be4b4.zip | |
hw/intc/arm_gicv3: Add NMI handling CPU interface registers
Add the NMIAR CPU interface registers which deal with acknowledging NMI. When introduce NMI interrupt, there are some updates to the semantics for the register ICC_IAR1_EL1 and ICC_HPPIR1_EL1. For ICC_IAR1_EL1 register, it should return 1022 if the intid has non-maskable property. And for ICC_NMIAR1_EL1 register, it should return 1023 if the intid do not have non-maskable property. Howerever, these are not necessary for ICC_HPPIR1_EL1 register. And the APR and RPR has NMI bits which should be handled correctly. Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> [PMM: Separate out whether cpuif supports NMI from whether the GIC proper (IRI) supports NMI] Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 20240407081733.3231820-19-ruanjinjie@huawei.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'hw/intc/arm_gicv3_cpuif.c')
| -rw-r--r-- | hw/intc/arm_gicv3_cpuif.c | 147 |
1 files changed, 142 insertions, 5 deletions
diff --git a/hw/intc/arm_gicv3_cpuif.c b/hw/intc/arm_gicv3_cpuif.c index 67d8fd07b7..715909d0f7 100644 --- a/hw/intc/arm_gicv3_cpuif.c +++ b/hw/intc/arm_gicv3_cpuif.c @@ -21,6 +21,7 @@ #include "hw/irq.h" #include "cpu.h" #include "target/arm/cpregs.h" +#include "target/arm/cpu-features.h" #include "sysemu/tcg.h" #include "sysemu/qtest.h" @@ -795,6 +796,13 @@ static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) return intid; } +static uint64_t icv_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* todo */ + uint64_t intid = INTID_SPURIOUS; + return intid; +} + static uint32_t icc_fullprio_mask(GICv3CPUState *cs) { /* @@ -832,6 +840,23 @@ static int icc_highest_active_prio(GICv3CPUState *cs) */ int i; + if (cs->nmi_support) { + /* + * If an NMI is active this takes precedence over anything else + * for priority purposes; the NMI bit is only in the AP1R0 bit. + * We return here the effective priority of the NMI, which is + * either 0x0 or 0x80. Callers will need to check NMI again for + * purposes of either setting the RPR register bits or for + * prioritization of NMI vs non-NMI. + */ + if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { + return 0; + } + if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { + return (cs->gic->gicd_ctlr & GICD_CTLR_DS) ? 0 : 0x80; + } + } + for (i = 0; i < icc_num_aprs(cs); i++) { uint32_t apr = cs->icc_apr[GICV3_G0][i] | cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; @@ -898,12 +923,24 @@ static bool icc_hppi_can_preempt(GICv3CPUState *cs) */ int rprio; uint32_t mask; + ARMCPU *cpu = ARM_CPU(cs->cpu); + CPUARMState *env = &cpu->env; if (icc_no_enabled_hppi(cs)) { return false; } - if (cs->hppi.prio >= cs->icc_pmr_el1) { + if (cs->hppi.nmi) { + if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && + cs->hppi.grp == GICV3_G1NS) { + if (cs->icc_pmr_el1 < 0x80) { + return false; + } + if (arm_is_secure(env) && cs->icc_pmr_el1 == 0x80) { + return false; + } + } + } else if (cs->hppi.prio >= cs->icc_pmr_el1) { /* Priority mask masks this interrupt */ return false; } @@ -923,6 +960,12 @@ static bool icc_hppi_can_preempt(GICv3CPUState *cs) return true; } + if (cs->hppi.nmi && (cs->hppi.prio & mask) == (rprio & mask)) { + if (!(cs->icc_apr[cs->hppi.grp][0] & ICC_AP1R_EL1_NMI)) { + return true; + } + } + return false; } @@ -1044,8 +1087,13 @@ static void icc_activate_irq(GICv3CPUState *cs, int irq) int aprbit = prio >> (8 - cs->prebits); int regno = aprbit / 32; int regbit = aprbit % 32; + bool nmi = cs->hppi.nmi; - cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); + if (nmi) { + cs->icc_apr[cs->hppi.grp][regno] |= ICC_AP1R_EL1_NMI; + } else { + cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); + } if (irq < GIC_INTERNAL) { cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); @@ -1159,6 +1207,7 @@ static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); + int el = arm_current_el(env); uint64_t intid; if (icv_access(env, HCR_IMO)) { @@ -1172,13 +1221,44 @@ static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) } if (!gicv3_intid_is_special(intid)) { - icc_activate_irq(cs, intid); + if (cs->hppi.nmi && env->cp15.sctlr_el[el] & SCTLR_NMI) { + intid = INTID_NMI; + } else { + icc_activate_irq(cs, intid); + } } trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); return intid; } +static uint64_t icc_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + uint64_t intid; + + if (icv_access(env, HCR_IMO)) { + return icv_nmiar1_read(env, ri); + } + + if (!icc_hppi_can_preempt(cs)) { + intid = INTID_SPURIOUS; + } else { + intid = icc_hppir1_value(cs, env); + } + + if (!gicv3_intid_is_special(intid)) { + if (!cs->hppi.nmi) { + intid = INTID_SPURIOUS; + } else { + icc_activate_irq(cs, intid); + } + } + + trace_gicv3_icc_nmiar1_read(gicv3_redist_affid(cs), intid); + return intid; +} + static void icc_drop_prio(GICv3CPUState *cs, int grp) { /* Drop the priority of the currently active interrupt in @@ -1205,6 +1285,12 @@ static void icc_drop_prio(GICv3CPUState *cs, int grp) if (!*papr) { continue; } + + if (i == 0 && cs->nmi_support && (*papr & ICC_AP1R_EL1_NMI)) { + *papr &= (~ICC_AP1R_EL1_NMI); + break; + } + /* Clear the lowest set bit */ *papr &= *papr - 1; break; @@ -1239,6 +1325,15 @@ static int icc_highest_active_group(GICv3CPUState *cs) */ int i; + if (cs->nmi_support) { + if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { + return GICV3_G1; + } + if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { + return GICV3_G1NS; + } + } + for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); @@ -1693,7 +1788,11 @@ static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, return; } - cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; + if (cs->nmi_support) { + cs->icc_apr[grp][regno] = value & (0xFFFFFFFFU | ICC_AP1R_EL1_NMI); + } else { + cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; + } gicv3_cpuif_update(cs); } @@ -1783,7 +1882,7 @@ static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); - int prio; + uint64_t prio; if (icv_access(env, HCR_FMO | HCR_IMO)) { return icv_rpr_read(env, ri); @@ -1803,6 +1902,22 @@ static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) } } + if (cs->nmi_support) { + /* NMI info is reported in the high bits of RPR */ + if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { + if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { + prio |= ICC_RPR_EL1_NMI; + } + } else { + if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { + prio |= ICC_RPR_EL1_NSNMI; + } + if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { + prio |= ICC_RPR_EL1_NMI; + } + } + } + trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); return prio; } @@ -2482,6 +2597,15 @@ static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { }, }; +static const ARMCPRegInfo gicv3_cpuif_gicv3_nmi_reginfo[] = { + { .name = "ICC_NMIAR1_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 5, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL1_R, .accessfn = gicv3_irq_access, + .readfn = icc_nmiar1_read, + }, +}; + static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); @@ -2839,6 +2963,19 @@ void gicv3_init_cpuif(GICv3State *s) define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); /* + * If the CPU implements FEAT_NMI and FEAT_GICv3 it must also + * implement FEAT_GICv3_NMI, which is the CPU interface part + * of NMI support. This is distinct from whether the GIC proper + * (redistributors and distributor) have NMI support. In QEMU + * that is a property of the GIC device in s->nmi_support; + * cs->nmi_support indicates the CPU interface's support. + */ + if (cpu_isar_feature(aa64_nmi, cpu)) { + cs->nmi_support = true; + define_arm_cp_regs(cpu, gicv3_cpuif_gicv3_nmi_reginfo); + } + + /* * The CPU implementation specifies the number of supported * bits of physical priority. For backwards compatibility * of migration, we have a compat property that forces use |