summary refs log tree commit diff stats
path: root/hw/misc/aspeed_sbc.c
blob: 2fc5db749d23e25bb8e36ae8d049930d852cbe52 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*
 * ASPEED Secure Boot Controller
 *
 * Copyright (C) 2021-2022 IBM Corp.
 *
 * Joel Stanley <joel@jms.id.au>
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "hw/qdev-properties.h"
#include "hw/misc/aspeed_sbc.h"
#include "qapi/error.h"
#include "migration/vmstate.h"
#include "trace.h"

#define R_PROT          (0x000 / 4)
#define R_CMD           (0x004 / 4)
#define R_ADDR          (0x010 / 4)
#define R_STATUS        (0x014 / 4)
#define R_CAMP1         (0x020 / 4)
#define R_CAMP2         (0x024 / 4)
#define R_QSR           (0x040 / 4)

/* R_STATUS */
#define ABR_EN                  BIT(14) /* Mirrors SCU510[11] */
#define ABR_IMAGE_SOURCE        BIT(13)
#define SPI_ABR_IMAGE_SOURCE    BIT(12)
#define SB_CRYPTO_KEY_EXP_DONE  BIT(11)
#define SB_CRYPTO_BUSY          BIT(10)
#define OTP_WP_EN               BIT(9)
#define OTP_ADDR_WP_EN          BIT(8)
#define LOW_SEC_KEY_EN          BIT(7)
#define SECURE_BOOT_EN          BIT(6)
#define UART_BOOT_EN            BIT(5)
/* bit 4 reserved*/
#define OTP_CHARGE_PUMP_READY   BIT(3)
#define OTP_IDLE                BIT(2)
#define OTP_MEM_IDLE            BIT(1)
#define OTP_COMPARE_STATUS      BIT(0)

/* QSR */
#define QSR_RSA_MASK           (0x3 << 12)
#define QSR_HASH_MASK          (0x3 << 10)

#define OTP_MEMORY_SIZE 0x4000
/* OTP command */
#define SBC_OTP_CMD_READ 0x23b1e361
#define SBC_OTP_CMD_WRITE 0x23b1e362
#define SBC_OTP_CMD_PROG 0x23b1e364

#define OTP_DATA_DWORD_COUNT        (0x800)
#define OTP_TOTAL_DWORD_COUNT       (0x1000)

/* Voltage mode */
#define MODE_REGISTER               (0x1000)
#define MODE_REGISTER_A             (0x3000)
#define MODE_REGISTER_B             (0x5000)

static uint64_t aspeed_sbc_read(void *opaque, hwaddr addr, unsigned int size)
{
    AspeedSBCState *s = ASPEED_SBC(opaque);

    addr >>= 2;

    if (addr >= ASPEED_SBC_NR_REGS) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: Out-of-bounds read at offset 0x%" HWADDR_PRIx "\n",
                      __func__, addr << 2);
        return 0;
    }

    return s->regs[addr];
}

static bool aspeed_sbc_otp_read(AspeedSBCState *s,
                                   uint32_t otp_addr)
{
    MemTxResult ret;
    AspeedOTPState *otp = &s->otp;
    uint32_t value, otp_offset;
    bool is_data = false;

    if (otp_addr < OTP_DATA_DWORD_COUNT) {
        is_data = true;
    } else if (otp_addr >= OTP_TOTAL_DWORD_COUNT) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "Invalid OTP addr 0x%x\n",
                      otp_addr);
        return false;
    }

    otp_offset = otp_addr << 2;
    ret = address_space_read(&otp->as, otp_offset, MEMTXATTRS_UNSPECIFIED,
                             &value, sizeof(value));
    if (ret != MEMTX_OK) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "Failed to read OTP memory, addr = %x\n",
                      otp_addr);
        return false;
    }
    s->regs[R_CAMP1] = value;
    trace_aspeed_sbc_otp_read(otp_addr, value);

    if (is_data) {
        ret = address_space_read(&otp->as, otp_offset + 4,
                                 MEMTXATTRS_UNSPECIFIED,
                                 &value, sizeof(value));
        if (ret != MEMTX_OK) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "Failed to read OTP memory, addr = %x\n",
                          otp_addr);
            return false;
        }
        s->regs[R_CAMP2] = value;
        trace_aspeed_sbc_otp_read(otp_addr + 1, value);
    }

    return true;
}

static bool mode_handler(uint32_t otp_addr)
{
    switch (otp_addr) {
    case MODE_REGISTER:
    case MODE_REGISTER_A:
    case MODE_REGISTER_B:
        /* HW behavior, do nothing here */
        return true;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "Unsupported address 0x%x\n",
                      otp_addr);
        return false;
    }
}

static bool aspeed_sbc_otp_write(AspeedSBCState *s,
                                    uint32_t otp_addr)
{
    if (otp_addr == 0) {
        trace_aspeed_sbc_ignore_cmd(otp_addr);
        return true;
    } else {
        if (mode_handler(otp_addr) == false) {
            return false;
        }
    }

    return true;
}

static bool aspeed_sbc_otp_prog(AspeedSBCState *s,
                                   uint32_t otp_addr)
{
    MemTxResult ret;
    AspeedOTPState *otp = &s->otp;
    uint32_t value = s->regs[R_CAMP1];

    ret = address_space_write(&otp->as, otp_addr, MEMTXATTRS_UNSPECIFIED,
                        &value, sizeof(value));
    if (ret != MEMTX_OK) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "Failed to write OTP memory, addr = %x\n",
                      otp_addr);
        return false;
    }

    trace_aspeed_sbc_otp_prog(otp_addr, value);

    return true;
}

static void aspeed_sbc_handle_command(void *opaque, uint32_t cmd)
{
    AspeedSBCState *s = ASPEED_SBC(opaque);
    AspeedSBCClass *sc = ASPEED_SBC_GET_CLASS(opaque);
    bool ret = false;
    uint32_t otp_addr;

    if (!sc->has_otp) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: OTP memory is not supported\n",
                      __func__);
        return;
    }

    s->regs[R_STATUS] &= ~(OTP_MEM_IDLE | OTP_IDLE);
    otp_addr = s->regs[R_ADDR];

    switch (cmd) {
    case SBC_OTP_CMD_READ:
        ret = aspeed_sbc_otp_read(s, otp_addr);
        break;
    case SBC_OTP_CMD_WRITE:
        ret = aspeed_sbc_otp_write(s, otp_addr);
        break;
    case SBC_OTP_CMD_PROG:
        ret = aspeed_sbc_otp_prog(s, otp_addr);
        break;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: Unknown command 0x%x\n",
                      __func__, cmd);
        break;
    }

    trace_aspeed_sbc_handle_cmd(cmd, otp_addr, ret);
    s->regs[R_STATUS] |= (OTP_MEM_IDLE | OTP_IDLE);
}

static void aspeed_sbc_write(void *opaque, hwaddr addr, uint64_t data,
                              unsigned int size)
{
    AspeedSBCState *s = ASPEED_SBC(opaque);

    addr >>= 2;

    if (addr >= ASPEED_SBC_NR_REGS) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: Out-of-bounds write at offset 0x%" HWADDR_PRIx "\n",
                      __func__, addr << 2);
        return;
    }

    switch (addr) {
    case R_STATUS:
    case R_QSR:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: write to read only register 0x%" HWADDR_PRIx "\n",
                      __func__, addr << 2);
        return;
    case R_CMD:
        aspeed_sbc_handle_command(opaque, data);
        return;
    default:
        break;
    }

    s->regs[addr] = data;
}

static const MemoryRegionOps aspeed_sbc_ops = {
    .read = aspeed_sbc_read,
    .write = aspeed_sbc_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4,
    },
};

static void aspeed_sbc_reset(DeviceState *dev)
{
    struct AspeedSBCState *s = ASPEED_SBC(dev);

    memset(s->regs, 0, sizeof(s->regs));

    /* Set secure boot enabled with RSA4096_SHA256 and enable eMMC ABR */
    s->regs[R_STATUS] = OTP_IDLE | OTP_MEM_IDLE;

    if (s->emmc_abr) {
        s->regs[R_STATUS] &= ABR_EN;
    }

    if (s->signing_settings) {
        s->regs[R_STATUS] &= SECURE_BOOT_EN;
    }

    s->regs[R_QSR] = s->signing_settings;
}

static void aspeed_sbc_instance_init(Object *obj)
{
    AspeedSBCClass *sc = ASPEED_SBC_GET_CLASS(obj);
    AspeedSBCState *s = ASPEED_SBC(obj);

    if (sc->has_otp) {
        object_initialize_child(OBJECT(s), "otp", &s->otp,
                                TYPE_ASPEED_OTP);
    }
}

static void aspeed_sbc_realize(DeviceState *dev, Error **errp)
{
    AspeedSBCState *s = ASPEED_SBC(dev);
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
    AspeedSBCClass *sc = ASPEED_SBC_GET_CLASS(dev);

    if (sc->has_otp) {
        object_property_set_int(OBJECT(&s->otp), "size",
                                OTP_MEMORY_SIZE, &error_abort);
        if (!qdev_realize(DEVICE(&s->otp), NULL, errp)) {
            return;
        }
    }

    memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_sbc_ops, s,
            TYPE_ASPEED_SBC, 0x1000);

    sysbus_init_mmio(sbd, &s->iomem);
}

static const VMStateDescription vmstate_aspeed_sbc = {
    .name = TYPE_ASPEED_SBC,
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (const VMStateField[]) {
        VMSTATE_UINT32_ARRAY(regs, AspeedSBCState, ASPEED_SBC_NR_REGS),
        VMSTATE_END_OF_LIST(),
    }
};

static const Property aspeed_sbc_properties[] = {
    DEFINE_PROP_BOOL("emmc-abr", AspeedSBCState, emmc_abr, 0),
    DEFINE_PROP_UINT32("signing-settings", AspeedSBCState, signing_settings, 0),
};

static void aspeed_sbc_class_init(ObjectClass *klass, const void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->realize = aspeed_sbc_realize;
    device_class_set_legacy_reset(dc, aspeed_sbc_reset);
    dc->vmsd = &vmstate_aspeed_sbc;
    device_class_set_props(dc, aspeed_sbc_properties);
}

static const TypeInfo aspeed_sbc_info = {
    .name = TYPE_ASPEED_SBC,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(AspeedSBCState),
    .instance_init = aspeed_sbc_instance_init,
    .class_init = aspeed_sbc_class_init,
    .class_size = sizeof(AspeedSBCClass)
};

static void aspeed_ast2600_sbc_class_init(ObjectClass *klass, const void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    AspeedSBCClass *sc = ASPEED_SBC_CLASS(klass);

    dc->desc = "AST2600 Secure Boot Controller";
    sc->has_otp = true;
}

static const TypeInfo aspeed_ast2600_sbc_info = {
    .name = TYPE_ASPEED_AST2600_SBC,
    .parent = TYPE_ASPEED_SBC,
    .class_init = aspeed_ast2600_sbc_class_init,
};

static void aspeed_ast10x0_sbc_class_init(ObjectClass *klass, const void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    AspeedSBCClass *sc = ASPEED_SBC_CLASS(klass);

    dc->desc = "AST10X0 Secure Boot Controller";
    sc->has_otp = true;
}

static const TypeInfo aspeed_ast10x0_sbc_info = {
    .name = TYPE_ASPEED_AST10X0_SBC,
    .parent = TYPE_ASPEED_SBC,
    .class_init = aspeed_ast10x0_sbc_class_init,
};

static void aspeed_sbc_register_types(void)
{
    type_register_static(&aspeed_ast2600_sbc_info);
    type_register_static(&aspeed_ast10x0_sbc_info);
    type_register_static(&aspeed_sbc_info);
}

type_init(aspeed_sbc_register_types);